Defensins in the honeybee antiinfectious protection

  • R. A. Ilyasov
  • L. R. Gaifullina
  • E. S. Saltykova
  • A. V. Poskryakov
  • A. G. Nikolaenko
Reviews

Abstract

Specific conditions of the honeybee life honeybee life require the presence of effective mechanisms of antiinfectious protection whose one of the most important components are defensins—the family of antimicrobial peptides. In the honeybee, defensins are present in the form of two different peptides—defensin 1 and 2 that are similar between each other only by 55.8%. Defensin 1 synthesized in salivary glands plays an important role in social immunity, whereas defensin 2 synthesized by cells of fat body and lymph is an important factor in the system of the honeybee individual immunity. Defensins are inducible, are controlled by interaction of Toll and Imd signal pathways and have a large specter of antimicrobial action.

Key words

honeybee Apis mellifera antimicrobial peptides defensins evolution immunity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Casteels, P., Ampe, C., Jacobs, E., and Tempst, P., Functional and Chemical Characterization of Hymenoptaecin, an Antibacterial Polypeptide That Is Infection-Inducible in the Honeybee (Apis mellifera), J. Biol. Chem., 1993, vol. 268, pp. 7044–7054.PubMedGoogle Scholar
  2. 2.
    Cremer, S., Armitage, S.A., and Schmid-Hempel, P., Social Immunity, Curr. Biol., 2007, vol. 17, no. 16, pp. 693–702.CrossRefGoogle Scholar
  3. 3.
    Hoffmann, J.A., Kafatos, F.C., Janawey, C.A., and Ezekovits, R.A.B., Phylogenetic Perspectives in Innate Immunity, Science, 1999, vol.284, pp. 1313–1318.PubMedCrossRefGoogle Scholar
  4. 4.
    Hoffmann, J.A. and Richhart, J.-M., Drosophila Immunity, Trends Cell Biol., 1997, vol. 7, pp. 309–316.CrossRefGoogle Scholar
  5. 5.
    Brey, P.T., Lee, W., Yamakawa, M., Koizumi, Z., Perrot, S., Francois, M., and Ashida, M., Role of the Integument in Insect Immunity: Epicuticular Abrasion and Induction of Cecropin Synthesis in Cuticular Epithelial Cells, Proc. Nat. Acad. Sci. USA, 1993, vol. 90, pp. 6275–6279.PubMedCrossRefGoogle Scholar
  6. 6.
    Lehane, M.J., Wu, D., and Lehane, S.M., Midgut-Specific Immune Molecules are Produced by the Blood-Sucking Insect Stomoxys calcitrans, Proc. Nat. Acad. Sci. USA, 1997, vol. 94, pp. 11502–11507.PubMedCrossRefGoogle Scholar
  7. 7.
    Lowenberger, C.A., Smartt, C.T., Bulet, P., Ferdig, M.T., Severson, D.W., Hoffman, J.A., and Christensen, B.M., Insect Immunity: Molecular Cloning, Expression, and Characterization of cDNAs and Genomic DNA Encoding Three Isoforms of Insect Defensin in Aedes aegypti, Insect Mol. Biol., 1999, vol. 8, pp. 107–118.PubMedCrossRefGoogle Scholar
  8. 8.
    Aerts, A.M., Francois, I.E., Cammue, B.P., and Thevissen, K., The Mode of Antifungal Action of Plant, Insect and Human Defensins, Cell. Mol. Life Sci., 2008, vol. 65, pp. 2069–2079.PubMedCrossRefGoogle Scholar
  9. 9.
    Bulet, P., Hetru, C., Dimarcq, J.L., and Hoffmann, D., Antimicrobial Peptides in Insects; Structure and Function, Dev. Comp. Immunol., 1999, vol. 23, pp. 329–344.PubMedCrossRefGoogle Scholar
  10. 10.
    Miyagi, T., Peng, Ch.Y.S., Chuang, R.Y., Mussen, E.C., Spivak, M.S., and Doi, R.H., Verification of Oxytetracycline-Resistant American Foulbrood Pathogen Paenibacillus Larvae in the United States, J. Invertebr. Pathol., 2000, vol. 75, pp. 95–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Bilikova, K., Gusui, W., and Simuth, J., Isolation of a Peptide Fraction from Honeybee Royal Jelly as a Potential Antifoulbrood Factor, Apidologie, 2001, vol. 32, pp. 275–283.CrossRefGoogle Scholar
  12. 12.
    Chernysh, S.I., Gordya, N.A., and Filatova, N.A., Protective Mechanisms of Insects: the Temps of Molecular and Phenotypic Evolution, Issled. Genet., 1999, Iss. 12, pp. 52–59.Google Scholar
  13. 13.
    Klaudiny, J., Hanes, J., Kulifajova, J., Albert, S., and Simuth, J., Molecular Cloning of Two cDNAs from the Head of the Nurse Honeybee (Apis mellifera L.) for Coding Related Proteins of Royal Jelly, J. Apic. Res., 1994, vol. 33, pp. 105–111.Google Scholar
  14. 14.
    Casteels, P., Ampe, C., Jacobs, F., Vaek, M., and Tempst, P., Apidaecins: Antibacterial Peptides from Honeybees, EMBO J., 1989, vol. 8, pp. 2387–2391.PubMedGoogle Scholar
  15. 15.
    Casteels, P., Ampe, C., Riviere, L., Damme, J.V., Elicone, C., Fleming, M., Jacobs, F., and Tempst, P., Isolation and Characterization of Abae cin, a Major Antibacterial Peptide in the Honeybee (Apis mellifera), Eur. J. Biochem., 1990, vol. 187, pp. 381–386.PubMedCrossRefGoogle Scholar
  16. 16.
    Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T., and Kobayashi, K.A., Potent Antibacterial Protein in Royal Jelly, J. Biol. Chem., 1990, vol. 265, pp. 11 333–11 337.Google Scholar
  17. 17.
    Klaudiny, J., Albert, S., Bachanova, K., Kopernicky, J., and Simuth, J., Two Structurally Different Defensin Genes, One of them Encoding a Novel Defensin Isoform, are Expressed in Honeybee Apis mellifera, Insect Biochem. Molec. Biol., 2005, vol. 35, pp. 11–22.CrossRefGoogle Scholar
  18. 18.
    Kwakman, P.H.S., te Velde, A.A., de Boer, L., Speijer, D., Vandenbroucke-Grauls, C.M.J.E., and Zaat, S.A.J., How Honey Kills Bacteria, The FASEB J., 2010, vol. 24, no. 7, pp. 2576–2582.CrossRefGoogle Scholar
  19. 19.
    Casteels-Josson, K., Zhang, W., Capaci, T., Casteels, P., and Tempst, P., Acute Transcriptional Response of the Honeybee Peptide-Antibiotics Gene Repertoire and Required Posttranslational Conversion of the Precursor Structures, J. Biol. Chem., 1994, vol. 269, pp. 28569–28575.PubMedGoogle Scholar
  20. 20.
    Hanzawa, H., Shimada, I., Kuzuhara, T., Komano, H., Kohda, D., Inagaki, F., Natori, S., and Arata, Y., 1H Nuclear Magnetic Resonance Study of the Solution Conformation of an Antibacterial Protein, Sapecin, FEBS Lett., 1990, vol. 269, pp. 413–420.PubMedCrossRefGoogle Scholar
  21. 21.
    Raj, P.A. and Dentino, A.R., Current Status of Defensins and Their Role in Innate and Adaptive Immunity, FEMS Microbial. Lett., 2002, vol. 206, pp. 9–18.CrossRefGoogle Scholar
  22. 22.
    Long, M., Evolution of Novel Genes, Curr. Opinion Genet. Dev., 2001, vol. 11, pp. 673–680.CrossRefGoogle Scholar
  23. 23.
    Rees, J.A., Moniatte, M., and Bulet, P., Novel Antibacterial Peptides Isolated from a European Bumblebee, Bombus pacuorum (Hymenoptera, Apoidea), Insect Biochem. Mol. Biol., 1997, vol. 27, pp. 413–422.PubMedCrossRefGoogle Scholar
  24. 24.
    Cornet, B., Bonmatin, J.-M., Hetru, C., Hoffmann, J.A., Ptak, M., and Vovelle, F., Refined Three-Dimensional Solution Structure of Insect Defensin A, Structure, 1995, vol. 3, pp. 435–441.PubMedCrossRefGoogle Scholar
  25. 25.
    Yoshiyama, M. and Kimura, K., Characterization of Antimicrobial Peptide Genes from Japanese Honeybee Apis cerana japonica (Hymenoptera: Apidae), Appl. Entomol. Zool., 2010, vol. 45, no. 4, pp. 609–614.CrossRefGoogle Scholar
  26. 26.
    Ilyasov, R.A., Poskryakov, A.V., and Nikolenko, A.G., Polymorphism of the Antibacterial Preparations in the population of Ural Honeybees, Bioraznoobrazie: problemy i perspektivy sokhraneniya (Biovariety: Problems and Perspectives of Preservation), Proc. Internat. Scient. Conference, Penza, 2008, vol. 2, pp. 247–248.Google Scholar
  27. 27.
    Solbrig, O. and Solbrig, D., Populyatsionnaya biologiya i evolutsiya (Populational Biology and Evolution), Mir, Moscow, 1982, 244 pp.Google Scholar
  28. 28.
    Dimarcq, J.L., Hoffman, D., Meister, M., Bulet, P., Lanot, R., Reichhart, J.M., and Hoffman, J.A., Characterization and Transcriptional Profiles of a Drosophila Gene Encoding an Insect Defensin, Eur. J. Biochem., 1994, vol. 221, pp. 201–209.PubMedCrossRefGoogle Scholar
  29. 29.
    Lopez, L., Morales, G., Ursic, R., Wolff, M., and Lowneberger, C., Isolation and Characterization of a Novel Insect Defensin from Rhodnius prolixus, a Vector of Chagas Disease, Insect Biochem. Mol. Biol., 2003, vol. 33, pp. 439–447.PubMedCrossRefGoogle Scholar
  30. 30.
    Bulet, P. and Stocklin, R., Insect Antimicrobial Peptides: Structure, Properties and Gene Regulation, Prot. Peptide Lett., 2005, vol. 12, pp. 3–11.CrossRefGoogle Scholar
  31. 31.
    Arbia, K.A. and Babbay, B., Management Strategies of Honeybee diseases, J. Entomol., 2011, vol. 8, no. 1, pp. 1–15.CrossRefGoogle Scholar
  32. 32.
    Bachanova, K., Klaudiny, J., Kopernicky, J., and Simuth, J., Identifcation of Honeybee Peptide Active against Paenibacillus larvae larvae through Bacterial Growth-Inhibition Assay on Polyacrylamide Gel, Apidologie, 2002, vol. 33, pp. 259–269.CrossRefGoogle Scholar
  33. 33.
    Yoon, H.J., Sohn, M.R., Young, M.C., Jianhong, L., Hung, D.S., and Byung, R.J., Defensin Gene Sequences of Three Different Bumblebees, Bombus spp., J. Asia-Pacific Entomol., 2009, vol. 12, pp. 27–31.CrossRefGoogle Scholar
  34. 34.
    Saltykova, E.S., Gaifullina, L.R., Ilyasov, R.A., and Nikolaenko, A.G., Effect of Chitozan on Induction of the Main Honeybee Antibacterial Peptides, Sovremennye perspektivy v issledovanii khitina i khitozana (Current Perspectives in the Study of Chitin and Chitozan), Proc. Tenth Scient. Internat. Confer., Nizhnii Novgorod, 2010, pp. 308–310.Google Scholar
  35. 35.
    Saltyikova, E.S., Ilyasov, R.A., Gaifullina, L.R., Poskryakov, A.V., Yamidanov, R.S., and Nikolaenko, A.G., Change of the Level of Antibacterial Peptides in the Organism of Honeybee Apis mellifera mellifera L., Sovremennoe pchelovodstvo. Problemy, opyt, novye tekhnologii (Current Apiculture. Problems, Experience, New Technologies), Proc. Internat. Scient. Confer., Yaroslavl, 2010, pp. 159–160.Google Scholar
  36. 36.
    Aronstein, K.A., Murray, K.D., and Saldivar, E., Transcriptional Responses in Honeybee Larvae Infected with Chalkbrood Fungus, BMC Genom., 2010, vol. 11, pp. 1–12.CrossRefGoogle Scholar
  37. 37.
    Aronstein, K.A. and Saldivar, E., Characterization of a Honeybee Toll Related Receptor Gene Am18w and its Potential Involvement in Antimicrobial Immune Defense, Apidologie, 2005, vol. 36, pp. 3–14.CrossRefGoogle Scholar
  38. 38.
    Higes, M., Martin-Hernandez, R., Gonzalez-Porto, A.V., Garcia-Palencia, P., Meana, A., and del Nozal, M.J., Honeybee Colony Collapse Due to Nosema cernae in Professional Apiaries, Environ. Microbiol. Rep., 2009, vol. 1, pp. 110–113.CrossRefGoogle Scholar
  39. 39.
    Klee, J., Besana, A.M., Genersch, E., Gisder, S., Nanetti, A., and Tam, D.Q., Widespread Dispersal of the Microsporidian Nosema ceranae, an Emergent Pathogen of the Western Honeybee, Apis mellifera, J. Invertebr. Pathol., 2007, vol. 96, pp. 1–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Antunez, K., Martin-Hernandez, R., Prieto, L., Meana, A., Zunino, P., and Higes, M., Immune Suppression in the Honeybee (Apis mellifera) Following Infection by Nosema ceranae (Microsporidia), Environ. Microbiol., 2009, vol. 11, no. 9, pp. 2284–2290.PubMedCrossRefGoogle Scholar
  41. 41.
    Grobov, O.F. and Likhotin, A.K, Bolezni i vrediteli pchel (Diseases and Pests of Honeybees), Agropromizdat, Moscow, 1989, 239 p.Google Scholar
  42. 42.
    Yang, D., Biragyn, A., Hoover, D.M., Lubkowski, J., and Oppenheim, J.J., Multiple Roles of Antimicrobial Defensins, Cathelicidins, and Eosinophil-Derived Neurotoxin in Host Defense II Annu. Rev. Immunol. 2004, vol. 22, pp. 181–215.PubMedCrossRefGoogle Scholar
  43. 43.
    Williams, G.R., Rogers, R.L., Kalkstein, A.L., Taylor, B.A., Shutler, D., and Ostiguy, N., Deformed Wing Virus in Western Honeybees (Apis mellifera) from Atlantic Canada, the First Description of an Overtlyinfected Emerging Queen, J. Invertebr. Pathol., 2009, vol. 101, pp. 77–79.PubMedCrossRefGoogle Scholar
  44. 44.
    Gregory, P.G., Evans, J.D., Rinderer, T., and de Guzman, L., Conditional Immune-Gene Suppression of Honeybees Parasitized by Varroa mites, J. Insect Sci., 2005, vol. 5, pp. 1–5.Google Scholar
  45. 45.
    Genersch, E. and Aubert, M., Emerging and Re-Emerging Viruses of the Honeybee (Apis mellifera L.), Vet. Res., 2010, vol. 41, no. 6, pp. 54–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Choi, Y.S., Choo, Y. M., Lee, K.S., Yoon, H.J., Kim, I., Je, Y.H., Sohn, H.D., and Jin, B.R., Cloning and Expression Profiling of Four Antibacterial Peptide Genes from the Bumblebee Bombus ignites, Comp. Biochem. Physiol., 2008, vol. 150, pp. 141–146.CrossRefGoogle Scholar
  47. 47.
    Qu, N., Jiang, J., Sun, L., Lai, C., Sun, L., and Wu, X., Proteomic Characterization of Royal Jelly Proteins in Chinese (Apis cerana cerana), European (Apis mellifera) Honeybees, Biochemistry, 2008, vol. 1, pp. 1–12.Google Scholar
  48. 48.
    Evans, J.D. and Spivak, M., Socialized Medicine Individual and Communal Disease Barriers in Honeybees, J. Invertebr. Pathol., 2010, vol. 103, pp. 562–572.CrossRefGoogle Scholar
  49. 49.
    Dunn, P.E., Humoral Immunity in Insects. Immune Strategy Appears to Correspond to Life-History Characteristics, Biosci., 1990, vol. 40, no. 10, pp. 738–744.CrossRefGoogle Scholar
  50. 50.
    Zhu, P. and Lu, Z., Studies on the Antibacterial Substances of Pieris rapae Induced by Deltamethrin and Trichlorfon, 19 Int. Congr. Entomol., Beijing, 1992, p. 594.Google Scholar
  51. 51.
    Furukawa, S., Taniai, K., Yang, J., Shono, T., and Yamakawa, M., Induction of Gene Expression of Antibacterial Proteins by Chitin Oligomers in the Silkworm, Bombyx mori, Insect Molec. Biol., 1999, vol. 8, no. 1, pp. 145–148.CrossRefGoogle Scholar
  52. 52.
    Taniani, K., Wago, H., and Yamakawa, M., In Vitro Phagocytosis of Escherichia coli and Release of Lipopolysaccharide by Adhering Hemocytes of the Silkworm, Bombyx mori, Biochem. Biophys. Res. Commun., 1997, vol. 231, pp. 623–627.CrossRefGoogle Scholar
  53. 53.
    Stanley-Samuelson, D.W., Prostaglandins, Related Eicosanoids in Insects, Adv. Insect Physiol., 1994, vol. 24, pp. 115–212.CrossRefGoogle Scholar
  54. 54.
    Faye, I. and Wyatt, G.R., The Synthesis of Antibacterial Proteins in Isolated Fat Body from Cecropia silkmoth Pupae, Experientia, 1980, vol. 36, pp. 1325–1326.PubMedCrossRefGoogle Scholar
  55. 55.
    Glupov, V.V., Patogeny nasekomykh: strukturnye i funktsionalnye aspekty (Insect Pathogens: Structural and Functional Aspects), Kruglyi God, Moscow, 2001,736 p.Google Scholar
  56. 56.
    Osta, M.A., Christophides, G.K., Vlachou, D., and Kafatos, F.C., Innate Immunity in the Malaria Vector Anopheles gambiae: Comparative and Functional Genomics, J. Exp. Biol., 2004, vol. 207, pp. 2551–2563.PubMedCrossRefGoogle Scholar
  57. 57.
    Cociancich, S., Ghazi, A., Hetru, C., Hoffmann, J.A., and Letellier, L., Insect Defensin, an Inducible Antibacterial Peptide, Forms Voltage-Dependent Channels in Micrococcus luteus, J. Biol. Chem., 1993, vol. 268, pp. 19239–19245.PubMedGoogle Scholar
  58. 58.
    Shahabuddin, M., Fields, I., Bulet, P., Hoffmann, J.A., and Miller, L., Plasmodium gallinaceum: Differential Killing of some Mosquito Stages of the Parasite by Insect Defensin, Exper. Parasitol., 1998, vol. 89, no. 1, pp. 103–112.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • R. A. Ilyasov
    • 1
  • L. R. Gaifullina
    • 1
  • E. S. Saltykova
    • 1
  • A. V. Poskryakov
    • 1
  • A. G. Nikolaenko
    • 1
  1. 1.Institute of Biochemistry and Genetics, Ufa Research CenterRussian Academy of SciencesUfa, BashkortostanRussia

Personalised recommendations