Skip to main content
Log in

Defensins in the honeybee antiinfectious protection

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Specific conditions of the honeybee life honeybee life require the presence of effective mechanisms of antiinfectious protection whose one of the most important components are defensins—the family of antimicrobial peptides. In the honeybee, defensins are present in the form of two different peptides—defensin 1 and 2 that are similar between each other only by 55.8%. Defensin 1 synthesized in salivary glands plays an important role in social immunity, whereas defensin 2 synthesized by cells of fat body and lymph is an important factor in the system of the honeybee individual immunity. Defensins are inducible, are controlled by interaction of Toll and Imd signal pathways and have a large specter of antimicrobial action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Casteels, P., Ampe, C., Jacobs, E., and Tempst, P., Functional and Chemical Characterization of Hymenoptaecin, an Antibacterial Polypeptide That Is Infection-Inducible in the Honeybee (Apis mellifera), J. Biol. Chem., 1993, vol. 268, pp. 7044–7054.

    PubMed  CAS  Google Scholar 

  2. Cremer, S., Armitage, S.A., and Schmid-Hempel, P., Social Immunity, Curr. Biol., 2007, vol. 17, no. 16, pp. 693–702.

    Article  Google Scholar 

  3. Hoffmann, J.A., Kafatos, F.C., Janawey, C.A., and Ezekovits, R.A.B., Phylogenetic Perspectives in Innate Immunity, Science, 1999, vol.284, pp. 1313–1318.

    Article  PubMed  CAS  Google Scholar 

  4. Hoffmann, J.A. and Richhart, J.-M., Drosophila Immunity, Trends Cell Biol., 1997, vol. 7, pp. 309–316.

    Article  CAS  Google Scholar 

  5. Brey, P.T., Lee, W., Yamakawa, M., Koizumi, Z., Perrot, S., Francois, M., and Ashida, M., Role of the Integument in Insect Immunity: Epicuticular Abrasion and Induction of Cecropin Synthesis in Cuticular Epithelial Cells, Proc. Nat. Acad. Sci. USA, 1993, vol. 90, pp. 6275–6279.

    Article  PubMed  CAS  Google Scholar 

  6. Lehane, M.J., Wu, D., and Lehane, S.M., Midgut-Specific Immune Molecules are Produced by the Blood-Sucking Insect Stomoxys calcitrans, Proc. Nat. Acad. Sci. USA, 1997, vol. 94, pp. 11502–11507.

    Article  PubMed  CAS  Google Scholar 

  7. Lowenberger, C.A., Smartt, C.T., Bulet, P., Ferdig, M.T., Severson, D.W., Hoffman, J.A., and Christensen, B.M., Insect Immunity: Molecular Cloning, Expression, and Characterization of cDNAs and Genomic DNA Encoding Three Isoforms of Insect Defensin in Aedes aegypti, Insect Mol. Biol., 1999, vol. 8, pp. 107–118.

    Article  PubMed  CAS  Google Scholar 

  8. Aerts, A.M., Francois, I.E., Cammue, B.P., and Thevissen, K., The Mode of Antifungal Action of Plant, Insect and Human Defensins, Cell. Mol. Life Sci., 2008, vol. 65, pp. 2069–2079.

    Article  PubMed  CAS  Google Scholar 

  9. Bulet, P., Hetru, C., Dimarcq, J.L., and Hoffmann, D., Antimicrobial Peptides in Insects; Structure and Function, Dev. Comp. Immunol., 1999, vol. 23, pp. 329–344.

    Article  PubMed  CAS  Google Scholar 

  10. Miyagi, T., Peng, Ch.Y.S., Chuang, R.Y., Mussen, E.C., Spivak, M.S., and Doi, R.H., Verification of Oxytetracycline-Resistant American Foulbrood Pathogen Paenibacillus Larvae in the United States, J. Invertebr. Pathol., 2000, vol. 75, pp. 95–96.

    Article  PubMed  CAS  Google Scholar 

  11. Bilikova, K., Gusui, W., and Simuth, J., Isolation of a Peptide Fraction from Honeybee Royal Jelly as a Potential Antifoulbrood Factor, Apidologie, 2001, vol. 32, pp. 275–283.

    Article  CAS  Google Scholar 

  12. Chernysh, S.I., Gordya, N.A., and Filatova, N.A., Protective Mechanisms of Insects: the Temps of Molecular and Phenotypic Evolution, Issled. Genet., 1999, Iss. 12, pp. 52–59.

    Google Scholar 

  13. Klaudiny, J., Hanes, J., Kulifajova, J., Albert, S., and Simuth, J., Molecular Cloning of Two cDNAs from the Head of the Nurse Honeybee (Apis mellifera L.) for Coding Related Proteins of Royal Jelly, J. Apic. Res., 1994, vol. 33, pp. 105–111.

    CAS  Google Scholar 

  14. Casteels, P., Ampe, C., Jacobs, F., Vaek, M., and Tempst, P., Apidaecins: Antibacterial Peptides from Honeybees, EMBO J., 1989, vol. 8, pp. 2387–2391.

    PubMed  CAS  Google Scholar 

  15. Casteels, P., Ampe, C., Riviere, L., Damme, J.V., Elicone, C., Fleming, M., Jacobs, F., and Tempst, P., Isolation and Characterization of Abae cin, a Major Antibacterial Peptide in the Honeybee (Apis mellifera), Eur. J. Biochem., 1990, vol. 187, pp. 381–386.

    Article  PubMed  CAS  Google Scholar 

  16. Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T., and Kobayashi, K.A., Potent Antibacterial Protein in Royal Jelly, J. Biol. Chem., 1990, vol. 265, pp. 11 333–11 337.

    CAS  Google Scholar 

  17. Klaudiny, J., Albert, S., Bachanova, K., Kopernicky, J., and Simuth, J., Two Structurally Different Defensin Genes, One of them Encoding a Novel Defensin Isoform, are Expressed in Honeybee Apis mellifera, Insect Biochem. Molec. Biol., 2005, vol. 35, pp. 11–22.

    Article  CAS  Google Scholar 

  18. Kwakman, P.H.S., te Velde, A.A., de Boer, L., Speijer, D., Vandenbroucke-Grauls, C.M.J.E., and Zaat, S.A.J., How Honey Kills Bacteria, The FASEB J., 2010, vol. 24, no. 7, pp. 2576–2582.

    Article  CAS  Google Scholar 

  19. Casteels-Josson, K., Zhang, W., Capaci, T., Casteels, P., and Tempst, P., Acute Transcriptional Response of the Honeybee Peptide-Antibiotics Gene Repertoire and Required Posttranslational Conversion of the Precursor Structures, J. Biol. Chem., 1994, vol. 269, pp. 28569–28575.

    PubMed  CAS  Google Scholar 

  20. Hanzawa, H., Shimada, I., Kuzuhara, T., Komano, H., Kohda, D., Inagaki, F., Natori, S., and Arata, Y., 1H Nuclear Magnetic Resonance Study of the Solution Conformation of an Antibacterial Protein, Sapecin, FEBS Lett., 1990, vol. 269, pp. 413–420.

    Article  PubMed  CAS  Google Scholar 

  21. Raj, P.A. and Dentino, A.R., Current Status of Defensins and Their Role in Innate and Adaptive Immunity, FEMS Microbial. Lett., 2002, vol. 206, pp. 9–18.

    Article  CAS  Google Scholar 

  22. Long, M., Evolution of Novel Genes, Curr. Opinion Genet. Dev., 2001, vol. 11, pp. 673–680.

    Article  CAS  Google Scholar 

  23. Rees, J.A., Moniatte, M., and Bulet, P., Novel Antibacterial Peptides Isolated from a European Bumblebee, Bombus pacuorum (Hymenoptera, Apoidea), Insect Biochem. Mol. Biol., 1997, vol. 27, pp. 413–422.

    Article  PubMed  CAS  Google Scholar 

  24. Cornet, B., Bonmatin, J.-M., Hetru, C., Hoffmann, J.A., Ptak, M., and Vovelle, F., Refined Three-Dimensional Solution Structure of Insect Defensin A, Structure, 1995, vol. 3, pp. 435–441.

    Article  PubMed  CAS  Google Scholar 

  25. Yoshiyama, M. and Kimura, K., Characterization of Antimicrobial Peptide Genes from Japanese Honeybee Apis cerana japonica (Hymenoptera: Apidae), Appl. Entomol. Zool., 2010, vol. 45, no. 4, pp. 609–614.

    Article  CAS  Google Scholar 

  26. Ilyasov, R.A., Poskryakov, A.V., and Nikolenko, A.G., Polymorphism of the Antibacterial Preparations in the population of Ural Honeybees, Bioraznoobrazie: problemy i perspektivy sokhraneniya (Biovariety: Problems and Perspectives of Preservation), Proc. Internat. Scient. Conference, Penza, 2008, vol. 2, pp. 247–248.

    Google Scholar 

  27. Solbrig, O. and Solbrig, D., Populyatsionnaya biologiya i evolutsiya (Populational Biology and Evolution), Mir, Moscow, 1982, 244 pp.

    Google Scholar 

  28. Dimarcq, J.L., Hoffman, D., Meister, M., Bulet, P., Lanot, R., Reichhart, J.M., and Hoffman, J.A., Characterization and Transcriptional Profiles of a Drosophila Gene Encoding an Insect Defensin, Eur. J. Biochem., 1994, vol. 221, pp. 201–209.

    Article  PubMed  CAS  Google Scholar 

  29. Lopez, L., Morales, G., Ursic, R., Wolff, M., and Lowneberger, C., Isolation and Characterization of a Novel Insect Defensin from Rhodnius prolixus, a Vector of Chagas Disease, Insect Biochem. Mol. Biol., 2003, vol. 33, pp. 439–447.

    Article  PubMed  CAS  Google Scholar 

  30. Bulet, P. and Stocklin, R., Insect Antimicrobial Peptides: Structure, Properties and Gene Regulation, Prot. Peptide Lett., 2005, vol. 12, pp. 3–11.

    Article  CAS  Google Scholar 

  31. Arbia, K.A. and Babbay, B., Management Strategies of Honeybee diseases, J. Entomol., 2011, vol. 8, no. 1, pp. 1–15.

    Article  Google Scholar 

  32. Bachanova, K., Klaudiny, J., Kopernicky, J., and Simuth, J., Identifcation of Honeybee Peptide Active against Paenibacillus larvae larvae through Bacterial Growth-Inhibition Assay on Polyacrylamide Gel, Apidologie, 2002, vol. 33, pp. 259–269.

    Article  CAS  Google Scholar 

  33. Yoon, H.J., Sohn, M.R., Young, M.C., Jianhong, L., Hung, D.S., and Byung, R.J., Defensin Gene Sequences of Three Different Bumblebees, Bombus spp., J. Asia-Pacific Entomol., 2009, vol. 12, pp. 27–31.

    Article  Google Scholar 

  34. Saltykova, E.S., Gaifullina, L.R., Ilyasov, R.A., and Nikolaenko, A.G., Effect of Chitozan on Induction of the Main Honeybee Antibacterial Peptides, Sovremennye perspektivy v issledovanii khitina i khitozana (Current Perspectives in the Study of Chitin and Chitozan), Proc. Tenth Scient. Internat. Confer., Nizhnii Novgorod, 2010, pp. 308–310.

    Google Scholar 

  35. Saltyikova, E.S., Ilyasov, R.A., Gaifullina, L.R., Poskryakov, A.V., Yamidanov, R.S., and Nikolaenko, A.G., Change of the Level of Antibacterial Peptides in the Organism of Honeybee Apis mellifera mellifera L., Sovremennoe pchelovodstvo. Problemy, opyt, novye tekhnologii (Current Apiculture. Problems, Experience, New Technologies), Proc. Internat. Scient. Confer., Yaroslavl, 2010, pp. 159–160.

    Google Scholar 

  36. Aronstein, K.A., Murray, K.D., and Saldivar, E., Transcriptional Responses in Honeybee Larvae Infected with Chalkbrood Fungus, BMC Genom., 2010, vol. 11, pp. 1–12.

    Article  Google Scholar 

  37. Aronstein, K.A. and Saldivar, E., Characterization of a Honeybee Toll Related Receptor Gene Am18w and its Potential Involvement in Antimicrobial Immune Defense, Apidologie, 2005, vol. 36, pp. 3–14.

    Article  CAS  Google Scholar 

  38. Higes, M., Martin-Hernandez, R., Gonzalez-Porto, A.V., Garcia-Palencia, P., Meana, A., and del Nozal, M.J., Honeybee Colony Collapse Due to Nosema cernae in Professional Apiaries, Environ. Microbiol. Rep., 2009, vol. 1, pp. 110–113.

    Article  Google Scholar 

  39. Klee, J., Besana, A.M., Genersch, E., Gisder, S., Nanetti, A., and Tam, D.Q., Widespread Dispersal of the Microsporidian Nosema ceranae, an Emergent Pathogen of the Western Honeybee, Apis mellifera, J. Invertebr. Pathol., 2007, vol. 96, pp. 1–10.

    Article  PubMed  Google Scholar 

  40. Antunez, K., Martin-Hernandez, R., Prieto, L., Meana, A., Zunino, P., and Higes, M., Immune Suppression in the Honeybee (Apis mellifera) Following Infection by Nosema ceranae (Microsporidia), Environ. Microbiol., 2009, vol. 11, no. 9, pp. 2284–2290.

    Article  PubMed  CAS  Google Scholar 

  41. Grobov, O.F. and Likhotin, A.K, Bolezni i vrediteli pchel (Diseases and Pests of Honeybees), Agropromizdat, Moscow, 1989, 239 p.

    Google Scholar 

  42. Yang, D., Biragyn, A., Hoover, D.M., Lubkowski, J., and Oppenheim, J.J., Multiple Roles of Antimicrobial Defensins, Cathelicidins, and Eosinophil-Derived Neurotoxin in Host Defense II Annu. Rev. Immunol. 2004, vol. 22, pp. 181–215.

    Article  PubMed  Google Scholar 

  43. Williams, G.R., Rogers, R.L., Kalkstein, A.L., Taylor, B.A., Shutler, D., and Ostiguy, N., Deformed Wing Virus in Western Honeybees (Apis mellifera) from Atlantic Canada, the First Description of an Overtlyinfected Emerging Queen, J. Invertebr. Pathol., 2009, vol. 101, pp. 77–79.

    Article  PubMed  Google Scholar 

  44. Gregory, P.G., Evans, J.D., Rinderer, T., and de Guzman, L., Conditional Immune-Gene Suppression of Honeybees Parasitized by Varroa mites, J. Insect Sci., 2005, vol. 5, pp. 1–5.

    Google Scholar 

  45. Genersch, E. and Aubert, M., Emerging and Re-Emerging Viruses of the Honeybee (Apis mellifera L.), Vet. Res., 2010, vol. 41, no. 6, pp. 54–74.

    Article  PubMed  Google Scholar 

  46. Choi, Y.S., Choo, Y. M., Lee, K.S., Yoon, H.J., Kim, I., Je, Y.H., Sohn, H.D., and Jin, B.R., Cloning and Expression Profiling of Four Antibacterial Peptide Genes from the Bumblebee Bombus ignites, Comp. Biochem. Physiol., 2008, vol. 150, pp. 141–146.

    Article  Google Scholar 

  47. Qu, N., Jiang, J., Sun, L., Lai, C., Sun, L., and Wu, X., Proteomic Characterization of Royal Jelly Proteins in Chinese (Apis cerana cerana), European (Apis mellifera) Honeybees, Biochemistry, 2008, vol. 1, pp. 1–12.

    Google Scholar 

  48. Evans, J.D. and Spivak, M., Socialized Medicine Individual and Communal Disease Barriers in Honeybees, J. Invertebr. Pathol., 2010, vol. 103, pp. 562–572.

    Article  Google Scholar 

  49. Dunn, P.E., Humoral Immunity in Insects. Immune Strategy Appears to Correspond to Life-History Characteristics, Biosci., 1990, vol. 40, no. 10, pp. 738–744.

    Article  Google Scholar 

  50. Zhu, P. and Lu, Z., Studies on the Antibacterial Substances of Pieris rapae Induced by Deltamethrin and Trichlorfon, 19 Int. Congr. Entomol., Beijing, 1992, p. 594.

    Google Scholar 

  51. Furukawa, S., Taniai, K., Yang, J., Shono, T., and Yamakawa, M., Induction of Gene Expression of Antibacterial Proteins by Chitin Oligomers in the Silkworm, Bombyx mori, Insect Molec. Biol., 1999, vol. 8, no. 1, pp. 145–148.

    Article  CAS  Google Scholar 

  52. Taniani, K., Wago, H., and Yamakawa, M., In Vitro Phagocytosis of Escherichia coli and Release of Lipopolysaccharide by Adhering Hemocytes of the Silkworm, Bombyx mori, Biochem. Biophys. Res. Commun., 1997, vol. 231, pp. 623–627.

    Article  Google Scholar 

  53. Stanley-Samuelson, D.W., Prostaglandins, Related Eicosanoids in Insects, Adv. Insect Physiol., 1994, vol. 24, pp. 115–212.

    Article  CAS  Google Scholar 

  54. Faye, I. and Wyatt, G.R., The Synthesis of Antibacterial Proteins in Isolated Fat Body from Cecropia silkmoth Pupae, Experientia, 1980, vol. 36, pp. 1325–1326.

    Article  PubMed  CAS  Google Scholar 

  55. Glupov, V.V., Patogeny nasekomykh: strukturnye i funktsionalnye aspekty (Insect Pathogens: Structural and Functional Aspects), Kruglyi God, Moscow, 2001,736 p.

    Google Scholar 

  56. Osta, M.A., Christophides, G.K., Vlachou, D., and Kafatos, F.C., Innate Immunity in the Malaria Vector Anopheles gambiae: Comparative and Functional Genomics, J. Exp. Biol., 2004, vol. 207, pp. 2551–2563.

    Article  PubMed  CAS  Google Scholar 

  57. Cociancich, S., Ghazi, A., Hetru, C., Hoffmann, J.A., and Letellier, L., Insect Defensin, an Inducible Antibacterial Peptide, Forms Voltage-Dependent Channels in Micrococcus luteus, J. Biol. Chem., 1993, vol. 268, pp. 19239–19245.

    PubMed  CAS  Google Scholar 

  58. Shahabuddin, M., Fields, I., Bulet, P., Hoffmann, J.A., and Miller, L., Plasmodium gallinaceum: Differential Killing of some Mosquito Stages of the Parasite by Insect Defensin, Exper. Parasitol., 1998, vol. 89, no. 1, pp. 103–112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Ilyasov.

Additional information

Original Russian Text © R.A. Ilyasov, L.R. Gaifullina, E.S. Saltykova, A.V. Poskryakov, A.G. Nikolaenko, 2012, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2012, Vol. 48, No. 5, pp. 425–432.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyasov, R.A., Gaifullina, L.R., Saltykova, E.S. et al. Defensins in the honeybee antiinfectious protection. J Evol Biochem Phys 49, 1–9 (2013). https://doi.org/10.1134/S0022093013010015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093013010015

Key words

Navigation