Skip to main content

The olfactory system of crustaceans as a model for ecologo-toxicological studies


Based on our own studies and on literature data, there are considered peculiarities of structural-functional organization of the crustacean olfactory system and effects of pollutants on it. The behavioral reaction changes based on chemoreception in the polluted aquatic environment are described. Usefulness of study of the crustacean olfactory system is substantiated as a perspective object of ecologo-toxicological investigations.

This is a preview of subscription content, access via your institution.


  1. 1.

    Derby, C.D. and Sorensen, P.W., Neural Processing, Perception, and Behavioral Responses to Natural Chemical Stimuli by Fish and Crustaceans, J. Chem. Ecol., 2008, vol. 34, pp. 898–914.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Hara, T.J., Is Morpholine an Effective Olfactory Stimulant in Fish?, J. Fish. Res. Bd Can., 1974, vol. 31, pp. 1547–1550.

    Article  CAS  Google Scholar 

  3. 3.

    Devitsina, G.V. and Malyukina, G.A., On Functional Organization of the Olfactory Organ in Micro- and Macrosmotics, Vopr. Ikhtiol., 1977, vol. 17, pp. 493–502.

    Google Scholar 

  4. 4.

    Doroshenko, M.A., Gistofiziologiya organa obonyaniya ryb (Histophysiology of the Fish Olfactory Organ), Vladivostok, 2002.

  5. 5.

    Gdovsky, P.A., Structural and Functional Organization of the Fish Olfactory System, Doctorate Dissertation, Borok, 2005.

  6. 6.

    Zielinski, B.S. and Hara, T.J., Olfaction Fish Physiology, Zielinski, B.S. and Hara, T.J., Eds., New York: Elsevier/Academic, 2007, pp. 1–43.

    Google Scholar 

  7. 7.

    Gdovsky, P.A. and Ruzhinskaya, N.N., The Effect of Copper Ions on the Peripheral Part of the Olfactory System in the Common Carp Cyprinus carpio L., Biol. Vnutr. Vod., 2001, vol. 1, pp. 90–95.

    Google Scholar 

  8. 8.

    Devitsina, G.V., The Effect of Heavy Metal Salts on the Morphofunctional State of the Olfactory and Gustatory Epithelium in the Common Carp Cyprinus carpio L., Sensorn. Sistemy, 2002, vol. 16, pp. 164–169.

    Google Scholar 

  9. 9.

    Tierney, K.B., Baldwin, D.H., Hara, T.J., Ross, P.S., Scholz, N.L., and Kennedy, C.J., Olfactory Toxicity in Fishes, Aquat. Toxicol., 2010, vol. 96, no. 1, pp. 2–26.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    McClintock, T.S., Ache, B.W., and Derby, C.D., Lobster Olfactory Genomics, Integrat. Comp. Biol., 2006, vol. 46, pp. 940–947.

    Article  CAS  Google Scholar 

  11. 11.

    Shuranova, Zh.P. and Burmistrov, Yu.M., Neirofiziologiya rechnogo raka (Neurophysiology of the European Crayfish), Moscow, 1988.

  12. 12.

    Schmidt, M., Chien, H., Tadesse, T., Johns, M.E., and Derby, C.D., Rosette-type Tegumental Glands Associates with Aesthetasc Sensilla in the Caribbean Spiny Lobster, Panulirus argus, Cell Tissue Res., 2006, vol. 325, pp. 369–395.

    Article  Google Scholar 

  13. 13.

    Fedotov, V.P., Systems of Chemoperception in Decapod Crayfish, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, pp. 3–24.

    PubMed  CAS  Google Scholar 

  14. 14.

    Sandeman, R.E., and Sandeman, D.C., Development, Growth, and Plasticity in the Crayfish Olfactory System, Microsc. Res. Tech., 2003, vol. 60, pp. 266–277.

    PubMed  Article  Google Scholar 

  15. 15.

    Blinova, N.K., Morphological Peculiarities of the Olfactory System in the Grass Shrimp Pandalus kessleri (Decapoda, Pandalidae), Vest. Zool., 2008, vol. 42, no. 1, pp. 57–62.

    Google Scholar 

  16. 16.

    Blinova, N.K., Aesthetasc Structure in the Grass Shrimp Pandalus latirostris, Zool. Zh., 1988, vol. 67, no. 2, pp. 44–48.

    Google Scholar 

  17. 17.

    Caprio, J. and Derby, C.D., Aquatic Animal Models in the Study of Chemoreception, The Senses: A Comprehensive Reference, Basbaum, A., Kaneko, A., Shepherd, G.M., and Westheimer, G., Eds., vol. 4, Olfaction and Taste, Firestein, S. and Beauchamp, G.K., Eds., San Diego, 2008, pp. 97–134.

  18. 18.

    Blinova, N.K. and Cherkashin, S.A., Development of Antennules in Larvae of the Grass Shrimp Pandalus kessleri, Biol. Morya, 1999, vol. 25, pp. 217–220.

    Google Scholar 

  19. 19.

    Blinova, N.K. and Cherkashin, S.A., Development of Olfactory Organs in Larvae of the Grass Shrimp Pandalus kessleri (Decapoda, Pandalidae) in Ontogenesis, Vestn. Zool., vol. 44, no. 5, pp. 413–419.

  20. 20.

    Steullet, P., Cate, H.S., and Derby, C.D., A Spatiotemporal Wave of Turnover and Functional Maturation of Olfactory Receptor Neurons in the Spiny Lobsters Panulirus argus, J. Neirosci., 2000, vol. 20, pp. 3282–3294.

    CAS  Google Scholar 

  21. 21.

    Tierney, A.J., Tompson, C.D., and Dunham, D.W., Fine Structure of the Aesthetasc Chemoreceptors in the Crayfish Orconectes propinquus, Can. J. Zool., 1986, vol. 64, pp. 392–399.

    Article  Google Scholar 

  22. 22.

    Guse, G.-W., Ultrastructure, Development and Moulting of the Aesthetascs of Neomysis integer and Idotea baltica (Crustacea, Malacostraca), Zoomorfology, 1983, vol. 103, no. 2, pp. 121–133.

    Article  Google Scholar 

  23. 23.

    Schmidt, M. and Ache, B.W. Antennular Projections to the Midbrain of the Spiny Lobster. II. Sensory Innervation of the Olfactory Lobe, J. Comp. Neurol., 1992, vol. 318, pp. 291–303.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Tsvileneva, V.A., Titova, V.A., and Kvashina, T.V., Brain Topography of the Shore Crab Hemigrapsus sanguineus, Zh. Evol. Biokhim. Fiziol., 1985, vol. 21, pp. 578–585.

    Google Scholar 

  25. 25.

    Beltz, B.S., Kordas, R., Lee, M.M., Long, G.B., Benton, J.L., and Sandeman, D., Ecological, Evolutionary, and Functional Correlates of Sensilla Number and Glomerular Density in the Olfactory System of Decapod Crustaceans, J. Comp. Neirol., 2003, vol. 455, pp. 260–269.

    Article  Google Scholar 

  26. 26.

    Blaustein, D.N., Derby, C.D, Simmons, R.B., and Beall, A.C., The Structure of the Brain and Medulla Terminalis of the Spiny Lobster (Panulirus argus) and Crayfish (Procambarus clarkii), with an Emphasis of Olfactory Centers, J. Crustac. Biol., 1988, vol. 8, pp. 493–519.

    Article  Google Scholar 

  27. 27.

    Derby, C.D., Why Have Neurogenesis in Adult Olfactory Systems?, Chem. Senses, 2007, vol. 32, pp. 361–363.

    PubMed  Article  Google Scholar 

  28. 28.

    Song, C.K., Johnstone, L.M., Edwards, D.H., Derby, C.D., and Schmidt, M., Cellular Basis of Neurogenesis in the Brain of Crayfish, Procambarus clarkii: Neurogenic Complex in the Olfactory Midbrain from Hatchlings to Adults, Arthrop. Struct. Dev., 2009, vol. 38, pp. 339–360.

    Article  CAS  Google Scholar 

  29. 29.

    Wachowiak, M. and Ache, B.W., Dual Inhibitory Pathways Mediated by GABA- and Histaminergyc Interneurons in the Lobster Olfactory Lobe, J. Comp. Physiol., 1997, vol. 180A, pp. 357–372.

    Article  Google Scholar 

  30. 30.

    Maynard, E., Microscopic Localization of Cholinesterases in the Nervous System of the Lobsters Panulirus argus and Homarus americanus, Cell Tissue Res., 1971, vol. 3, pp. 215–250.

    Article  CAS  Google Scholar 

  31. 31.

    Barker, D., Herbert, E., Hildebrand, J., and Kravitz, E., Acetylcholine and Lobster Sensory Neurons, J. Physiol., 1972, vol. 226, pp. 508–512.

    Google Scholar 

  32. 32.

    Blinova, N.K., Morphofunctional Specificities of Olfactory Reception in the Grass Shrimp, Candidate Sci. Dissertation, Vladivostok, 1991.

  33. 33.

    Johanson, K.U.I. and De Mellon, F., Nitric Oxide as a Putative Messenger Molecule in the Crayfish Olfactory Midbrain, Brain Res., 1998, vol. 807, pp. 237–242.

    Article  Google Scholar 

  34. 34.

    Scholz, N.L., Chang, E.S., Graubard, K., and Truman, J.W., The NO/cGMP Pathway and the Development of Neural Networks in Postembryonic Lobsters, J. Neurobiol., 1998, vol. 34, pp. 208–226.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Carr, W.E.S., Gleeson, R.A., and Trapido-Rosenthal, H.G., The Role of Perireceptor Events in Chemosensory Processes, Trend. Neirosci., 1990, vol. 13, pp. 212–215.

    Article  CAS  Google Scholar 

  36. 36.

    Fedotov, V.P. and Karpenko, D.O., A Study of Chemoreceptors from the Claw of the European Crayfish Movement, Upravlenie dvizheniyami u rechnykh zhivotnykh (Management of Movements in Aquatic Animals), Leningrad, 1981, pp. 37–45.

  37. 37.

    Shepheard, P., Chemoreception in the Antennule of the Lobsters Homarus americanus, Mar. Behav. Physiol., 1974, vol. 2, pp. 261–273.

    CAS  Google Scholar 

  38. 38.

    Blinova, N.K., Sensitivity of Olfactory Receptors to Alimentary Attractants in the Grass Shrimp, Morskii Evol. Zh., 2009, vol. 8, no. 4, pp. 53–58.

    Google Scholar 

  39. 39.

    Fusser, S.M., Carr, W.B.S., and Ache, B.V., Antennular Chemo Sensitivity in the Spiny Lobster Panulirus argus: Studies of Taurine Sensitive Receptors, Biol. Bull., 1978, vol. 154, pp. 226–240.

    Article  Google Scholar 

  40. 40.

    Derby, C.D., Steullet, P., Horner, A.J., and Cate, H.S., The Sensory Basis of Feeding Behavior in the Caribbean Spiny Lobster, Panulirus argus, Mar. Freshwater Res., 2001, vol. 52, pp. 1339–1350.

    Article  Google Scholar 

  41. 41.

    Roethke, N., MacDiarmid, A.B., and Montgomery, J.C., The Role of Olfaction during Mating in the Southern Temperate Spiny Lobster Jesus Edwards, Hormones and Behavior, 2004, vol. 46, pp. 311–318.

    Article  Google Scholar 

  42. 42.

    Derby, C.D. and Ataman, J., Influence of Drilling Muds on the Primary Chemosensory Neurons in Walking Legs of the Lobster Homarus americanus, Can. J. Fish Aquat. Sci., 1981, vol. 38, pp. 268–274.

    Article  Google Scholar 

  43. 43.

    Blinova, N.K. and Cherkashin, S.A., The Effect of Phenol on Antennular Chemoreception in the Grass Shrimp, Biol. Nuke, 1987, no.2, pp. 44–48.

  44. 44.

    Luk’yanenko, V.I., Physiologo-Biochemical Aspects of Aquatic Toxicology, Vliya nie zagryaznyayushchikh veshchestv na gi dro bi ontov i ekosistemy vodoemov (Effect of Pollutants on Hydrobionts and Ecosystems of Water Reservoirs), 1979, pp. 49–57.

  45. 45.

    Yakovlev, V.A., Action of Heavy Metals on Freshwater Zoobenthos: 2. Consequences for Communities, Ekolog. Khimiya, 2002, vol. 11, pp. 117–132.

    CAS  Google Scholar 

  46. 46.

    Bergey, L.L. and Weis, J.S., Molting as a Mechanism of Depuration of Metals in the Fiddler Crab, Uca pugnax, Mar. Environ. Res., 2007, vol. 64, pp. 556–562.

    Article  CAS  Google Scholar 

  47. 47.

    Winner, R.W., Selenium Effects on Antennal Integrity and Chronic Copper Toxicity in Daphnia pulex (de Geer), Bull. Environ. Contam. Toxicol., 1984, vol. 33, pp. 605–611.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Blinova, N.K., Effect of Heavy Metals on Development of Olfactory Organs in Pandalus kessleri Larvae, “Marine Coastal Ecosystems”: Tez. III Mezhdunar. nauch.-prakt. konf. (Abstr. III Intern. Sci.-Pract. Confer.), Vladivostok, 2008, pp. 225–226.

  49. 49.

    Sindermann, C.J., Bang, F.B., Christensen, N.O., Dethlefsen, V., Harshbarger, J.C., Mitchel, J.R., and Mulcany, M.F., The Role and Value of Pathology in Pollution Effects Monitoring Programmers, Pathology Panel Report. Rapp. P. v. Reun. Cons. Int. Explor. Mer., 1980, vol. 179, pp. 135–151.

    Google Scholar 

  50. 50.

    Golovanova, I.L. and Frolova, T.V., Effects of Copper, Zinc, and Cadmium on Carbohydrase Activity in Aquatic Invertebrates, Biol. Vnutr. Vod, 2005, vol. 4, pp. 73–83.

    Google Scholar 

  51. 51.

    Santos, M.H.S., Cunha, N.T., and Bianchini, A., Effects of Copper and Zinc on Growth, Feeding and Oxygen Consumption of Farfantepenaeus pau lensis Postlarvae (Decapoda: Penaeidae), J. Exp. Mar. Biol. Ecol., 2000, vol. 247, pp. 233–242.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Sundelin, B., Ryk, C., and Malmberg, G., Effects on the Sexual Maturation of the Sediment-Living Amphipod Monoporeia affinis, Environ. Toxicol., 2000, vol. 15, pp. 518–526.

    Article  CAS  Google Scholar 

  53. 53.

    Luk’yanenko, V.I. and Cherkashin, S.A., Experimental Substantiation of a Possibility of Using Toxicant Avoidance Reaction by Hydrobionts in Water Quality Bioassays, Fiziologiya i biokhimiya gidrobiontov (Physiology and Biochemistry of Hydrobionts), Yaroslavl, 1987, pp. 48–57.

  54. 54.

    Flerov, B.A., Ekologo-fiziologicheskie aspekty toksikologii presnovodnykh zhivotnykh (Ecologo-Physiological Aspects of Freshwater Animal Toxicology), Leningrad, 1989.

  55. 55.

    Pynnnen, K., Heavy Metal-Induced Changes in the Feeding and Burrowing Behaviour of a Baltic Isopod, Saduria (Mesidotea) entomon L., Mar. Environ. Res., 1996, vol. 41, pp. 145–156.

    Article  Google Scholar 

  56. 56.

    Matishov, G.G., Kreneva, S.V., Muraveiko, V.M., Shparkovsky, I.A., and Il’in, G.V., Biotestirovanie i prognoz izmenchivosti vodnykh ekosistem pri anropogennom zagryaznenii (Biotesting and Prediction of Variability in Aquatic Ecosystems at Anthropogenic Pollution), Apatity, 2003.

  57. 57.

    Cherkashin, S.A., Biotesting: Terminology, Tasks, the Main Requirements, and Use in Fish Toxicology, Izv. TINRO, 2001, vol. 128, pp. 1020–1035.

    Google Scholar 

  58. 58.

    Evans, G.W., Lye, M., and Lockwood, A.P.M., Some Effect of Oil Dispersants on the Feeding Behavior of the Brown Shrimp, Crangon crangon, Mar. Behav. Physiol., 1977, vol. 4, pp. 171–181.

    Article  Google Scholar 

  59. 59.

    Atema, J. and Stein, L.S., Effect of Crude Oil on the Feeding Behavior of the Lobster Homarus americanus, Envir. Pollut., 1974, vol. 6, pp. 77–86.

    Article  CAS  Google Scholar 

  60. 60.

    Kittredge, J.S., The Effects of Crude Oil Pollution on the Behavior of Marine Invertebrates-Final Report, Arlington, 1973.

  61. 61.

    Pearson, W.H. and Olla, B.L., Threshold for Detection of Naphthalene and Other Behavioural Responses by Blue Crab, Callinectes sapidus, Estuaries, 1980, vol. 3, pp. 224–229.

    Article  CAS  Google Scholar 

  62. 62.

    McLeese, D.W., Chemosensory Response of Lobster Homarus americanus in the Presence of Copper and Phoshamidon, J. Fish. Res. Bd Can., 1975, vol. 32, pp. 2055–2060.

    Article  CAS  Google Scholar 

  63. 63.

    Atema, J., Leavitt, D.F., Barshaw, D.E., and Cuomo, M.C., Effect of Drilling Muds on Primary Chemosensory Neurons in Walking Legs of the Lobster, Homarus americanus, Can. J. Fish. Aquat. Sci., 1982, vol. 38, pp. 675–690.

    Article  Google Scholar 

  64. 64.

    Blaxter, J.H.S. and Ten Hallers-Tjabbes, C.C., The Effects of Pollutants on Sensory Systems and Behavior of Aquatic Animals, Netherl. J. Aquat. Ecol., 1992, vol. 26, pp. 43–58.

    Article  CAS  Google Scholar 

  65. 65.

    McLeese, D.W., Toxicity of Copper at Two Temperatures and Three Salinities to the American Lobsters (Homarus americanus), J. Fish. Res. Bd Can., 1974, vol. 31, pp. 1949–1952.

    Article  CAS  Google Scholar 

  66. 66.

    Flerov, B.A. and Tagunov, B.B., Analysis of the Toxicant Avoidance Reaction in a Branchiopod Streptocephalus torvicomis (Waga), Inform. Bull. Inst. Biol. Vnutr. Vod, 1978, vol. 40, pp. 68–71.

    Google Scholar 

  67. 67.

    Cherkashin, S.A., Some Aspects of the Effects of Oil Hydrocarbons on Fish and Crustaceans, Vestnik DVO RAN, 2005, vol. 3, pp. 83–91.

    Google Scholar 

  68. 68.

    Luk’yanenko, V.I., Cherkashin, S.A., and Kandinskii, P.A., Juvenile Fish and Mysid Behavior in Solutions of Organic Toxicants, Gidrobiol. Zh., 1987, vol. 23, no. 4, pp. 64–69.

    Google Scholar 

  69. 69.

    Percy, J.A., Responses of Arctic Marine Crustaceans to Crude Oil and Oil-Tainted Food, Environ. Poll., 1976, vol. 10, pp. 155–162.

    Article  Google Scholar 

  70. 70.

    Percy, J.A., Responses of Arctic Marine Benthic Crustaceans to Sediments Contaminated with Crude Oil, Environ. Poll., 1977, vol. 13, no. 1, pp. 1–10.

    Article  CAS  Google Scholar 

  71. 71.

    Percy, J.A. and Mullin, T.S., Effects of Crude Oils on the Locomotor Activity of Arctic Marine Invertebrates, Mar. Poll. Bull., 1977, vol. 8, no. 2, pp. 35–40.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to N. K. Blinova.

Additional information

Original Russian Text © N.K. Blinova, S.A. Cherkashin, 2011, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2012, Vol. 48, No. 2, pp. 133–141.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blinova, N.K., Cherkashin, S.A. The olfactory system of crustaceans as a model for ecologo-toxicological studies. J Evol Biochem Phys 48, 155–165 (2012).

Download citation

Key words

  • crustaceans
  • chemoreception
  • olfactory system
  • behavior
  • pollutants