Skip to main content
Log in

Effect of temperature on proteinase activites of enteral microbiota and intestinal mucosa of fish of different ecological groups

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Effect of temperature on proteinases activities of enteral microbiota and of intestinal mucosa was studied in five fish species (roach Rutilus rutilus, crucian carp Carassius carassius, common perch Perca fluviatilis, pike-perch Zander lucioperca, and pike Esox lucius) belonging by the nutrition type to different ecological groups. Essential differences of temperature characteristics of proteinases of intestinal mucosa and of enteral microbiota are revealed in fish belonging to different ecological groups. The character of the t-function of proteinases of intestinal mucosa and enteral microbiota for casein and hemoglobin as a rule is different. The values of the apparent E act proteinases of intestinal mucosa for casein in most cases are higher than those of enteral microbiota, while those for hemoglobin, on the contrary, are lower. The lowest values of relative proteinase activities for casein in the zone of low temperatures (38 and 45.3% of the maximal activity) and the Eact value (less than 2.0 kcal/mol) are found at study of proteinases of enteral microbiota in common perch and crucian carp. The latter indicates a significant adaptability of the enteral microbiota proteinases of common perch and crucian carp to functioning at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Ugolev, A.M. and Kuz’mina, V.V., Pishchevaritel’nye protsesy i adaptatsii u ryb (Digestive Processes and Adaptation in Fish), St. Petersburg, 1993.

  2. Kuz’mina, V.V., Fiziologo-biokhimicheskie osnovy eksotrofii ryb (Physiologo-Biochemical Bases of Fish Exotrophy), Moscow, 2005.

  3. Kuz’mina, V.V., Effect of Temperature on Digestive Hydrolases of Invertebrate Animals, Zh. Evol. Biokhim. Fiziol., 1999, vol. 35, pp. 15–19.

    Google Scholar 

  4. Kuz’mina, V.V., Skvortsov, E.G., and Shalygin, M.V., Effect of Temperature on Activity of Chimus and Intestinal Mucosa in Fish of Different Ecological Groups, Zh. Evol. Biokhim. Fiziol., 2008, vol. 44, pp. 482–487.

    PubMed  Google Scholar 

  5. Zubkova, L.A., Bacterial Flora of Organs and Tissues of the Common Carp (Cyprinus carpio L.), Trudy KaspNIRKH, 1965, vol. 20, pp. 117–121.

    Google Scholar 

  6. Zubkova, L.A., To the Question of Normal Microflora of Volga Pike-perch (Lucioperca lucioperca), Trudy KaspNIRKH, 1966, vol. 22, pp. 81–85.

    Google Scholar 

  7. Kuz’mina, V.V. and Pervushina, K.A., Effect of Tem perature and pH on Activity of Proteinases from Fish Intestinal Mucosa and Enteral Microbiota, Zh. Evol. Biokhim. Fiziol., 2004, vol. 40, pp. 214–219.

    PubMed  Google Scholar 

  8. Mattheis, Th., Ökologie der Bakterien in Darn von Susswassernuttfishen, Z. Fisch., 1964, vol. 12, pp. 6–10.

    Google Scholar 

  9. Richter-Otto, W. and Fehrmann, M., Zur Methodik von Darmflora Untersuchungen, Erhahrugsforsch, 1956, vol. 1, pp. 584–686.

    Google Scholar 

  10. Anson, M., The Estimation of Pepsin, Trypsin, Papain and Cathepsin with Hemoglobin, J. Gen. Physiol., 1938, vol. 22, pp. 79–83.

    Article  PubMed  CAS  Google Scholar 

  11. Asgeirsson, B., Fox, J.W., and Bjarnason, J.B., Purification and Characterization of Trypsin from the Poikilotherm Gadus morhua, Eur. J. Biochem., 1989, vol. 180, pp. 85–94.

    Article  PubMed  CAS  Google Scholar 

  12. Pavlisko, A., Rial, A., and Coppes, Z., Purification and Characterization of a Protease from the Pyloric Caeca of Menhaden (Brevoortia spp.) and Mullet (Mugil spp.) from the Southwest Atlantic Region, J. Food. Biochem., 1999, vol. 23, pp. 225–241.

    Article  CAS  Google Scholar 

  13. Kishimura, H., Tokuda, Y., Klomklao, S., Benjakul, S., and Ando, S., Enzymatic Characterization of Trypsin from Pyloric Ceca of Spotted Mackerel (Scomber australasicus), J. Food. Biochem., 2006, vol. 30, pp. 466–477.

    Article  CAS  Google Scholar 

  14. Pavlisko, A., Rial, A., de Vecchi, S., and Coppes, Z., Properties of Pepsin and Trypsin Isolated from the Digestive Tract of Parona signata “Palomera”, J. Food. Biochem., 1997, vol. 21, pp. 289–308.

    Article  CAS  Google Scholar 

  15. Razenkov, I.P., Novye dannye po fiziologi i patologii pishchevareniya (New Data on Digestion Physiology and Pathophysiology), Moscow, 1948.

  16. Shlygin, G.K., Participation of the Gastrointestinal Tract in General Metabolism, Rukovodstvo po fiziologii: fiziologiya pishchevareniya (Handbook of Physiology: Digestion Physiology), Leningrad, 1974.

  17. Ugolev, A.M., Evolyutsiya pishchevareniya i printsipy evolyutsii funktsii (Evolution of Digestion and the Principles of Evolution of Functions), Leningrad, 1985.

  18. Shobokene, Ya.S., Simbiontnoe pishchevarenie u gidrobiontov (Symbiotic Digestion in Hydrobionts), Vilnius, 1989.

  19. Cahill, M.M., Bacterial Flora of Fishes: a Review, Microbiol. Ecol., 1990, vol. 19, pp. 21–41.

    Article  Google Scholar 

  20. Buddington, R.K. and Krogdahl, A., Hormonal Regulation of the Fish Gastrointestinal Tract, Comp. Biochem. Physiol., 2004, vol. 139A, pp. 261–270.

    CAS  Google Scholar 

  21. Clements, K.D., Fermentation and Gastrointestinal Microorganisms in Fishes, Gastrointestinal Ecosystems and Fermentations, Mackie, R.I. and White, B.A., New York, 1997, Ch. 6, pp. 156–198.

  22. Lubyanskene, V., Verbitzkas, Yu., Yankyavichus, K., Lyasauskene, L., Gribauskene, V., Tryapshene, O., Yusolenene, Yu., Yastuyginene, R., Babyanskas, M., and Yankauskene, R., Obligatnyi simbioz mikroflory pishchevaritelnogo trakta i organizma (Obligatory Symbiosis of Microflora of Digestive Tract and Organism), Vilnius, 1989.

  23. Kuz’mina, V.V. and Skvortsova, E.G., Bacteria of the Gastrointestinal Tract and Their Role in Digestive Processes in Fish, Usp. Sovr. Biol., 2002, vol. 122, pp. 569–579.

    Google Scholar 

  24. Izvekova, G.I., Izvekov, E.I., and Plotnikov, A.O., Symbiotic Microflora of Fish from Different Ecological Groups, Izv. RAN, Ser. Biol., 2007, pp. 728–737.

  25. Trust, T.J., Bull, L.M., Currie, B.R., and Buckley, J.T., Obligate Anaerobic Bacteria in the Gastrointestinal Microflora of the Grass Carp (Ctenopharingodon idella), Goldfish (Carassius auratus), and Rainbow Trout (Salmo gairdneri), J. Fish. Res. Bd. Can., 1979, vol. 36, pp. 1174–1179.

    Article  Google Scholar 

  26. Syvokiene, J., Mickeniene, L., Kazlauskiene, N., and Stasiunaite, P., Macroin Microorgaganizmu Tarpusavio Santukiu Ivertinimas Lasisinese Zuvyse Imant Pavyzdziu Slaki, Ekologija (Vilnius), 1997, pp. 40–48.

  27. Antonov, B.K., Khimiya proteoliza (Chemistry of Proteolysis), Moscow, 1983.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuz’mina.

Additional information

Original Russian Text © V.V. Kuz’mina, M.V. Shalygin, E.G. Skvortsova, 2012, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2012, Vol. 48, No. 2, pp. 120–125.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuz’mina, V.V., Shalygin, M.V. & Skvortsova, E.G. Effect of temperature on proteinase activites of enteral microbiota and intestinal mucosa of fish of different ecological groups. J Evol Biochem Phys 48, 140–146 (2012). https://doi.org/10.1134/S0022093012020028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093012020028

Key words

Navigation