Skip to main content
Log in

Photoperiod-temperature interaction-a new form of seasonal control of growth and development in insects and in particular a Carabid Beetle, Amara communis (Coleoptera: Carabidae)

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Amara communis larvae were found to develop significantly faster and to have higher growth rate at short-day (12 h) as compared to long-day (22 h) photoperiods at all used temperatures (16, 18, 20, and 22°C). The coefficient of linear regression of larval development rate on temperature was significantly higher at the short day than at the long day. The thermal developmental thresholds appeared similar at both photoperiods. Body weight of young beetles reared under different photoperiods was almost the same. Thus, photoperiod does not simply accelerate or decelerate insect development, but modifies the thermal reaction norm. At short days, larval development becomes faster and more temperature-dependent, which provides a timely completion of development at the end of summer. The analysis of literature data has allowed us to find the photoperiodic modification of thermal requirements for development in 5 insect orders: Orthoptera, Heteroptera, Coleoptera, Lepidoptera, and Diptera. Modification may result in significant changes in the slope of the regression line, and hence the sum of degree-days, and in the thermal developmental threshold. Consequently, the thermal requirements for development in many insects gradually vary during summer under the effect of changing day-length, which may have adaptive significance. Thus, the photoperiodic modification of thermal reaction norms acts as a specific form of seasonal control of insect development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geyspitz, K.F. and Zarankina, A.I., Peculiar Aspects of the Photoperiodic Reaction in the Pale Tussock Dasychira pudibunda L. (Lepidoptera, Orgyidae), Entomol. Obozr., 1963, vol. 42, pp. 29–38.

    Google Scholar 

  2. Goettel, M.S. and Philogènea, B.J.R., Effects of Photoperiod and Temperature on the Development of a Univoltine Population of the Banded Woollybear, Pyrrharctia (Isia) isabella, J. Insect Physiol., 1978, vol.24, pp. 523–527.

    Article  Google Scholar 

  3. Danilevsky, A.S., Photoperiodism and Seasonal Development of Insects, Oliver and Boyd, Edinburgh, 1965.

    Google Scholar 

  4. Tauber, M.J., Tauber, C.A., and Masaki, S., Seasonal Adaptations of Insects, Oxford University Press, New York, 1986.

    Google Scholar 

  5. Danks, H.V., Insect Dormancy: an Ecological Perspective. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, 1987.

  6. Zaslavskii, V.A., Photoperiodic and Temperature Control off Insect Development, Tr. Zool. Inst. Akad. Nauk SSSR, 1984, vol. 120.

  7. Leimar, O., Life History Plasticity: Influence of Photoperiod on Growth and Development in the Common Blue Butterfly, Oikos, 1996, vol. 76, pp. 228–234.

    Article  Google Scholar 

  8. Musolin, D.L. and Saulich, A.Kh., Photoperiodic Regulation of Seasonal Development in True Bugs (Heteroptera), Entomol. Obozr., 1996, vol. 75, pp. 489–506.

    Google Scholar 

  9. Musolin, D.L. and Numata, H., Photoperiodic and Temperature Control of Diapause Induction and Colour Change in the Southern Green Stink Bug Nezara viridula, Physiol. Entomol., 2003, vol. 28, pp. 65–74.

    Article  Google Scholar 

  10. Musolin, D.L., Tsytsulina, K., and Ito, K., Photoperiodic and Temperature Control of Reproductive Diapause Induction in the Predatory Bug Orius strigicollis (Heteroptera: Anthocoridae) and its Implications for Biological Control, Biol. Control., 2004, vol. 31, pp. 91–98.

    Article  Google Scholar 

  11. Saulich, A.Kh. and Volkovich, T.A., Ekologiya fotoperiodizma nasekomykh (Ecology of Insect Photoperiodism), St. Petersburg, 2004.

  12. Nylin, S., Seasonal Plasticity and Life-Cycle Adaptations in Butterflies, Insect Life-Cycle Polymorphism: Theory, Evolution and Ecological Consequences for Seasonality and Diapause Control, Danks, H.V., Ed., Dordrecht, Netherlands: Kluwer Academic, 1994, pp. 41–67.

    Google Scholar 

  13. Gotthard, K., Life History Plasticity in the Satyrine Butterfly Lasiommata petropolitana: Investigating an Adaptive Reaction Norm, J. Evol. Biol., 1998, vol. 11, pp. 21–39.

    Article  Google Scholar 

  14. Gotthard, K., Nylin, S., and Wiklund, C., Mating Opportunity and the Evolution of Sex-Specific Mortality Rates in a Butterfly, Oecologia, 2000, vol. 122, pp. 36–43.

    Article  Google Scholar 

  15. Numata, H., Saulich, A.H., and Volkovich, T.A., Photoperiodic Responses of Linden Bug, Pyrrhocoris apterus, under Conditions of Constant Temperature and under Thermoperiodic Conditions, Zool. Sci., 1993, vol. 10, pp. 521–527.

    Google Scholar 

  16. Saunders, D.S., A Diapause Induction-Termination Asymmetry in the Photoperiodic Responses of the Linden Bug, Pyrrhocoris apterus, and an Effect of Near-Critical Photoperiods on the Development, J. Insect Physiol., 1983, vol. 29, pp. 399–405.

    Article  Google Scholar 

  17. Lopatina, E.B., Balashov, S.V., and Kipyatkov, V.E., First Demonstration of the Influence of Photoperiod on the Thermal Requirements for Development in Insects and in Particular the Linden-Bug, Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae), Eur. J. Entomol., 2007, vol. 104, pp. 23–31.

    Google Scholar 

  18. Kutcherov, D.A., Lopatina, E.B., and Kipyatkov, V.E., Photoperiod Modifies Thermal Reaction Norms for Growth and Development in the Red Poplar Leaf Beetle Chrysomela populi (Coleoptera: Chrysomelidae), J. Insect Physiol., 2011, vol. 57, pp. 892–898.

    Article  PubMed  CAS  Google Scholar 

  19. Paarmann, W., Ideas about the Evolution of the Annual Reproduction Rhythms in Carabid Beetles of the Different Climatic Zones, On the Evolution of Behavior in Carabid Beetles. Miscellaneous Papers, den Boer, P.J., et al., Eds., 1979, vol. 18, pp. 119–132.

  20. Kipyatkov, V.E. and Lopatina, E.B., Intraspecies Variation of Thermal Reaction Norms for Development in Insects: New Approaches and Perspectives, Entomol. Obozr., 2010, vol. 90, pp. 163–184.

    Article  Google Scholar 

  21. Campbell, A., Fraser, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M., Temperature Requirements of Some Aphids and Their Parasites, J. Appl. Ecol., 1974, vol. 11, pp. 431–438.

    Article  Google Scholar 

  22. Sokal, R.R. and Rohlf, F.J., Biometry: The Principles and Practice of Statistics in Biological Research, N.Y.: W.H. Freeman and Co., 1995.

    Google Scholar 

  23. Kozhanchikov, I.V., Metody issledovanii ekologii nasekomykh (Methods of Studies of Insect Ecology), Moscow, 1961.

  24. Mednikov, B.M., Evolutionary Aspects of Development of Thermolability of Insects, Usp. Sovrem. Biol., 1966, vol. 61, pp. 247–259.

    PubMed  CAS  Google Scholar 

  25. Mednikov, B.M., Vneshnyaya sreda i razvivayushchiisya organism (Environment and the Developing Organism), Moscow, 1977, pp. 7–52.

  26. Ayres, M.P. and MacLean, S.F., Jr., Molt as a Component of Insect Development: Galerucella sagittariae (Chrysomelidae) and Epirrita autumnata (Geometridae), Oikos, 1987, vol. 48, pp. 273–279.

    Article  Google Scholar 

  27. Bogacheva, I.A., Temperature Dependences of Development Rate in Phyllophagous Insects of Southern Subarctics, Zool. Zh., 1998, vol. 77, pp. 662–668.

    Google Scholar 

  28. StatSoft, Inc. Electronic Statistics Textbook, Tulsa, OK: StatSoft. WEB: http://www.statsoft.com/textbook/, 2010.

  29. Lopatina, E.B., Kipyatkov, V.E., Balashov, S.V., Dubovikoff, D.A., and Sokolova, I.V., Adaptive Latitudinal Variation of Development Time and Thermal Reaction Norms in the Ground Beetle Amara communis (Coleoptera: Carabidae), Entomol. Obozr., 2011, vol. 90.

  30. Prasad, N.G. and Joshi, A., What Have Two Decades of Laboratory Life-History Evolution Studies on Drosophila melanogaster Taught Us?, J. Genetics, 2003, vol. 82, pp. 45–76.

    Article  CAS  Google Scholar 

  31. Fischer, K., Zwaan, B.J., and Brakefield, P.M., Realised Correlated Responses to Artificial Selection on Pre-Adult Life-History Traits in Butterfly, Heredity, 2007, vol. 98, pp. 157–164.

    Article  PubMed  CAS  Google Scholar 

  32. Wagner, M.R., Clancy, C.M., and Kirkbride, D.M., Predicting Number of Oocytes in Adult Western Spruce Budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae), Environ. Entomol., 1987, vol. 16, pp. 551–555.

    Google Scholar 

  33. Lederhouse, R.C., Filke, M.D., and Scriber, J.M., The Contributions of Larval Growth and Pupal Duration to Protandry in the Black Swallowtail Butterfly, Papilio polyxenes, Oecologia, 1982, vol. 53, pp. 296–300.

    Article  Google Scholar 

  34. Murakami, A., Separation of Male and Female Melon Fly, Dacus cucurbitae Coquillet, According to Pupal Size, Larval and Pupal Period, Bull. Okinawa Agric. Exp. Sta, 1993, vol. 14, pp. 47–52.

    Google Scholar 

  35. Nesin, A.P. and Kipyatkov, V.E., Intraspecies Variability and Stability of Thermal Reaction Norms in Pupae of Blowflies Calliphora vicina R.-D. and C. vomitoria L. (Diptera, Calliphoridae), Problemy i perspektivy obshchei entomologii. Tez. dokl. XIII Ciezda Russkogo entomol. obshch. (Problems and Perspectives of General Entomology. Abstr. Rep. of the XIII Congress of the Russian Entomol. Soc.), Krasnodar, 2007, pp. 251–252.

  36. Kipyatkov, V., Lopatina, E., and Imamgaliev, A., Duration and Thermal Reaction Norms of Development are Significantly Different In Winter and Summer Brood Pupae of the Ants Myrmica rubra Linnaeus, 1758 and M. ruginodis Nylander, 1846 (Hymenoptera, Formicidae), Myrmecol. News, 2005, vol. 7, pp. 69–76.

    Google Scholar 

  37. Balashov, S.V., Kipyatkov, V.E., and Filippov, B. Yu., Comparative Studies on Thermal Conditions in Habitats of Ground Beetles (Coleoptera: Carabidae) in European Russia, Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta, 2011, Series 3, vol. 2, pp. 3–12.

    Google Scholar 

  38. Kidokoro, T. and Masaki, S., Photoperiodic Response in Relation to Variable Voltinism in the Ground Cricket, Pteronemobius fascipes Walker (Orthoptera: Gryllidae), Jap. J. Ecol., 1978, vol. 28, pp. 291–298.

    Google Scholar 

  39. Sakurai, H., Yoshida, N., Kobayashi, Ch., and Takeda, S., Effects of Temperature and Day Length on Oviposition and Growth of Lady Beetle, Coccinella septempunctata bruckii, Res. Bull. Faculty College of Agriculture, Gifu University, 1991, vol. 56, pp. 45–50.

    Google Scholar 

  40. Abou-Elela, R. and Hilmy, N., Wirkungen der Fotoperiode und Temperatur auf die Entwicklungsstadien von Acrotylus insubricus Scop. (Orthopt., Acrididae), Anzeiger Sch dlingskde, Pflanzenschutz, Umweltschutz., 1977, vol. 50, pp. 25–28.

    Article  Google Scholar 

  41. Hoshikawa, K., Seasonal Adaptation in a Northernmost Population of Epilachna admirabilis (Coleoptera: Coccinellidae). I. Effect of Day Length and Temperature on Growth in Preimaginal Stages, Jap. J. Entomol. (New Series), 2000, vol. 3, pp. 17–25.

    Google Scholar 

  42. Topp, W. and Smetana, A., Distributional Pat tern and Development of the Winter-Active Beetle Quedius pellax (Staphylinidae), Global Ecol. Biogeogr. Lett., 1998, vol. 7, pp. 189–195

    Article  Google Scholar 

  43. Holzapfel, C.M. and Bradshaw, W.E., Geography of Larval Dormancy in the Tree-Hole Mosquito, Aedes triseriatus (Say), Can. J. Zool., 1981, vol. 59, pp. 1014–1021

    Article  Google Scholar 

  44. Dingle, H., Mousseau, T.A., and Scott, S.M. Altitudinal Variation in Life Cycle Syndromes of California Populations of Grasshopper, Melanoplus sanguinipes (F.), Oecologia, 1990, vol. 84, pp. 199–206.

    Google Scholar 

  45. Musolin, D.L. and Saulich, A.Kh., Factorial Regulation of Seasonal Cycle in the Shield Bug Graphosoma lineatum (Heteroptera, Pentatomidae). I. Thermal Reaction Norms and Photoperiodic Reaction, Entomol. Obozr., 1995, vol. 74, pp. 736–743. (In Russian)

    Google Scholar 

  46. Kucherov, D.A. and Kipyatkov, V.E., Control of preimaginal development by photoperiod and temperature in the dock leaf beetle Gastrophysa viridula (De Geer) (Coleoptera, Chrysomelidae), Entomol. Obozr., 2001, vol. 91, pp. 692–708.

    Article  Google Scholar 

  47. Aksit, T., Cakmak, I., and Ozer, G., Effect of Temperature and Photoperiod on Development and Fecundity of an Acarophagous Ladybird Beetle, Stethorus gilvifrons, Phytoparasitica, 2007, vol. 35, pp. 357–366.

    Article  Google Scholar 

  48. Groeters, F.R., Geographic Conservatism of Development Rate in the Milkweed-Oleander Aphid, Aphis nerii, Acta Oecologica, 1992, vol. 13, pp. 649–661.

    Google Scholar 

  49. Tauber, C.A., Tauber, M.J., and Nechols, J.R., Thermal Requirements for Development in Chrysopa oculata: a Georgaphically Stable Trait, Ecology, 1987, vol. 68, pp. 1479–1487.

    Article  Google Scholar 

  50. Roff, D.A., Optimizing Development Time in a Seasonal Environment: the “Ups and Downs” of Clinal Variation, Oecologia, 1980, vol. 45, pp. 202–208.

    Article  Google Scholar 

  51. Honěk, A. and Kocourek, F., Thermal Requirements for Development of Aphidophagous Coccinellidae (Coleoptera), Chrysopidae, Hemerobiidae (Neuroptera), and Syrphidae (Diptera): Some General Trends, Oecologia, 1988, vol. 76, pp. 455–460.

    Google Scholar 

  52. Honěk, A. and Kocourek, F., Temperature and Development Time in Insects: a General Relationship between Thermal Constants, Zool. Jb. Syst., 1990, vol. 117, pp. 401–439.

    Google Scholar 

  53. Honěk, A., The Relationship between Thermal Constants for Insect Development: a Verification, Acta Soc. Zool. Bohem., 1996, vol. 60, pp. 115–152.

    Google Scholar 

  54. Honěk, A., Geographical Variation in Thermal Requirements for Insect Development, Eur. J. Entomol., 1996, vol. 93, pp. 303–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Lopatina.

Additional information

Original Russian Text © E. B. Lopatina, V. E. Kipyatkov, S. V. Balashov, D. A. Kutcherov, 2011, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2011, Vol. 47, No. 6, pp. 491–503.

To the 100th Anniversary of A.S. Danilevsky

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopatina, E.B., Kipyatkov, V.E., Balashov, S.V. et al. Photoperiod-temperature interaction-a new form of seasonal control of growth and development in insects and in particular a Carabid Beetle, Amara communis (Coleoptera: Carabidae). J Evol Biochem Phys 47, 578–592 (2011). https://doi.org/10.1134/S002209301106010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209301106010X

Key words

Navigation