Skip to main content
Log in

Effect of apomorphine on the wakefulness-sleep cycle of the common frog Rana temporaria

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

This work considers effects of introduction into spinal lymphatic sac of dopamine agonist-apomorphine (APO)-at doses of 0.1, 1.0, 2.0, and 4.0 mg/kg body weight on the common frog wakefulness-sleep cycle (WSC). Usually the frog WSC is represented by wakefulness and three types of passive-protective behavior: the immobility states of the type of catalepsy, catatonia, and cataplexy that are characterized by high thresholds of arousal and by different (corresponding to the name) skeletal muscle tones. These immobility forms are considered as homologues of mammalian stressreaction, hibernation, and sleep. Low apomorphine doses produced in WSC a marked decrease of portion of wakefulness and an increase of the immobility state of the catalepsy type; high doses, on the contrary, initially promoted in CNS an increase of wakefulness and the state of catalepsy by demonstrating thereby its stressogenic action; after this, in WSC there increased the portion of the sleep-like immobility state of the catalepsy type that is considered a functional homologue of sleep of homoiothermal animals. In spectra of electrograms of the frog telencephalon the representation of waves of the delta diapason rose. Taking into account that the states of catalepsy and cataplexy in frogs are under control of anterior hypothalamus, it can be suggested that manifestations of cataplexy (sleep) in frog are due to the low level of dopaminergic activity, whereas manifestations of catalepsy (the homologue of stress reaction) are due to the high dopamine content in the anterior hypothalamic structures. Comparative analysis of changes in WSC of amphibians and mammals in response to administration of dopamine and its agonists allows thinking that the role of the dopaminergic neurotransmitter system in regulation of the vertebrate WSC certainly consists in that the low level of activity of this system facilitates development of sleep (catalepsy), whereas the high level provides reaction of arousal and is actively included in the system providing stress-reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, B.E., Arousal Systems, Front Biosci., 2003, vol. 8, pp. 438–451.

    Article  Google Scholar 

  2. Boutrel, B. and Koob, G.F., What Keeps Us Awake: the Neorupharmacology of Stimulants and Wakefulness-Promoting Medications, Sleep, 2004, vol. 27, pp. 1181–1194.

    PubMed  Google Scholar 

  3. Siegel, J.M., The Neurotransmitters of Sleep, J. Clin. Psychiat., 2004, vol. 65, pp. Suppl. 16, pp. 3–7.

    Google Scholar 

  4. Monti, J.M. and Jantos, H., The Roles of Dopamine and Serotonin, and of Their Receptors, in Regulating Sleep and Waking, Prog. Brain Res., 2008, vol. 17, pp. 625–646.

    Article  Google Scholar 

  5. Trulson, M.E. and Preussler, D.W., Dopamine-Containing, Ventral Tegmental Area Neurons in Freely Moving Cats: Activity during the Sleep-Waking Cycle and Effects of Stress, Exp. Neurol., 1984, vol. 83, pp. 367–377.

    PubMed  CAS  Google Scholar 

  6. Moore, R.Y. and Bloom, F.E., Central Catecholamine Neuron System: Anatomy and Physiology of the Dopamine Systems, Annu. Rev. Neurosci., 1978, vol. 1, pp. 129–169.

    Article  PubMed  CAS  Google Scholar 

  7. Thompson, R.H., Ménard, A., Pombal, M., and Grillner, S., Forebrain Dopamine Depletion Impairs Motor Behavior in Lamprey, Eur. J. Neurosci., 2008, vol. 27, pp. 1452–1460.

    Article  PubMed  CAS  Google Scholar 

  8. Carr, J.A., Norris, D.O., and Samora, A., Organization of Tyrosine Hydroxylase-Immunoreactive Neurons in the Di- and Mesencephalon of the American bullfrog (Rana catesbeiana) during Metamorphosis, Cell Tissue Res., 1991, vol. 263, pp. 155–163.

    Article  PubMed  CAS  Google Scholar 

  9. Steenhardand, B.M. and Besharse, J.C., Phase Shifting the Retinal Circadian Clock: xPer2 mRNA Induction by Light and Dopamine, J. Neurosci., 2000, vol. 20, pp. 8572–8577.

    Google Scholar 

  10. Glagov, M. and Ewert, J.-P., Dopaminergic Modulation of Visual Response in Toad. 1. Apomorphine Induced Effects on Visually Directed Appetitive and Consumatory Prey Catching Behavior, Comp. Physiol. A, 1997, vol. 180, pp. 1–9.

    Article  Google Scholar 

  11. Cooper, R.L. and Neckameyer, W.S., Dopaminergic Modulation of Motor Neuron Activity and Neuromuscular Function in Drosophila melanogaster, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1999, vol. 122, pp. 199–210.

    Article  PubMed  CAS  Google Scholar 

  12. Kume, K., Kume, S., Park, S.P., Hirsh, J., and Jackson, F.R., Dopamine is a Regulator of Arousal in the Fruit Fly, J. Neurosci., 2005, vol. 25, no. 32, pp. 7377–7384.

    Article  PubMed  CAS  Google Scholar 

  13. Kapsimali, M., Dumond, H., Le Crom, S., Coudouet, S., Vincent, J.D., and Vernier, P., Evolution and Development of Dopaminergic Neurotransmitter Systems in Vertebrates, J. Soc. Biol., 2000, vol. 194, pp. 87–93.

    PubMed  CAS  Google Scholar 

  14. Knight, D.P., Sclerotization of the Perisarc of the Calyptoblastic Hydroid, Laomedea flexuosa. 1. The Identification and Localization of Dopamine in the Hydroid, Tissue Cell, 1970, vol. 2, pp. 467–477.

    Article  PubMed  CAS  Google Scholar 

  15. Oganesyan, T.A., Romanova, I.V., Aristakesyan, E.A., Kuzik, V.V., Makina, D.M., Marina, I.Yu., Khromenkova, A.E., Artamokhina, I.V., and Belova, V.A., Diencephalo-Telencephalic Changes of the Tyrosine Hydroxylase Activity in Rats and Common Frogs during Sleep Deprivation, Zh. Evol. Biokhim. Fiziol., 2008, vol. 44, pp. 250–257.

    Google Scholar 

  16. Lima, M.M.S., Andersen, M.L., Reksidler, A.B., Vital, M.A., and Tufik, S., The Role of the Substantia Nigra Pars Compacta in Regulating Sleep Patterns in Rats, PLoS ONE 2, 2007, p. e513.

  17. Ongini, E., Bonizzoni, E., Ferry, N., Milani, S., and Trampus, M., Differential Effects of Dopamine D-1 and D-2 Receptor Antagonist Antipsychotics on Sleep-Wake Patterns in the Rat, J. Pharmacol. Exp. Ther., 1993, vol. 266, pp. 726–731.

    PubMed  CAS  Google Scholar 

  18. Monti, J.M. and Monti, D., The Involvement of Dopamine in the Modulation of Sleep and Waking, Sleep Med. Rev., 2007, vol. 11, pp. 113–133.

    Article  PubMed  Google Scholar 

  19. Dzirasa, K., Ribeiro, S., Costa, R., Santos, L.M., Lin, S.C., Grosmark, A., Sotnikova, T.D., Gainetdinov, R.R., Caron, M.G., and Nicolelis, M.A., Dopaminergic Control of Sleep-Wake States, J. Neurosci., 2006, vol. 26, pp. 10 577–10 589.

    Article  CAS  Google Scholar 

  20. Isaac, S.O. and Berridge, C.W., Wake-Promoting Actions of Dopamine D1 and D2 Receptor Stimulation, J. Pharmacol. Exp. Ther., 2003, vol. 307, pp. 386–394.

    Article  PubMed  CAS  Google Scholar 

  21. Siegel, J.M., Do All Animals Sleep?, Trends Neurosci., 2008, vol. 31, pp. 208–213.

    Article  PubMed  CAS  Google Scholar 

  22. Karmanova, I.G., New about the Sleep Peculiarities in Organization of Wakefulness-Sleep Cycle in the Poikilothermal Vertebrates, Zh. Evol. Biokhim. Fiziol., 1996, vol. 32, pp. 511–535.

    PubMed  CAS  Google Scholar 

  23. Aristakesyan, E.A., Evolutionary Aspects of the Interaction of Sleep and Stress: Phylo- and Ontogenetic Approach, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, pp. 598–604.

    Google Scholar 

  24. Karmanova, I.G., Aristakesyan, E.A., and Shilling, N.V., Neurophysiological Analysis of the Hypothalamic Mechanisms of Regulation of Primary Sleep and Hypobiosis, Dokl. Akad. Nauk SSSR, 1987, vol. 294, pp. 245–248.

    PubMed  CAS  Google Scholar 

  25. Aristakesyan, E.A. and Karmanova, I.G., Development of the Activated Phase of Sleep in Phyloand Ontogenesis, Zh. Evol. Biokhim. Fiziol., 1995, vol. 31, pp. 346–365.

    Google Scholar 

  26. Otellin, V.A. and Arushanyan, E.B., Nigrostrionigralnaya sistema (Nigro-Strio-Nigral System), Moscow, 1989.

  27. Wisor, J.P., Nishino, S., Sora, I., Uhl, G.H., Mignot, E., and Edgar, D.M., Dopaminergic Role in Stimulant-Induced Wakefulness, J. Neurosci., 2001, vol. 21, pp. 1787–1794.

    PubMed  CAS  Google Scholar 

  28. Le Moal, M. and Simon, H., Mesocorticolimbic Dopaminergic Network: Functional and Regulatory Roles, Physiol. Rev., 1991, vol. 71, pp. 155–234.

    PubMed  Google Scholar 

  29. Trulson, M.E., Preussler, D.W., and Howell, G.A., Activity of Substantia Nigra Units Across the Sleep-Waking Cycle in Freely Moving Cats, Neurosci. Lett., 1981, vol. 26, pp. 183–188.

    Article  PubMed  CAS  Google Scholar 

  30. Smeets, W.J.A.J., Marin, O., and Gonzalez, A., Evolution of Basal Ganglia: New Perspectives through a Comparative Approach, J. Anat, 2000, vol. 196, pp. 501–517.

    Article  PubMed  CAS  Google Scholar 

  31. Thierry, A., Tassin, O., Blanc, G., and Glowinski, J., Selective Activation of Mesocortical DA System by Stress, Nature, 1976, vol. 263, pp. 242–244.

    Article  PubMed  CAS  Google Scholar 

  32. Miller, J.D., Farber, J., Gatz, P., Roffarg, H., and German, D.C., Activity of Mesencephalic Dopamine and Non-Dopamine Neurons across Stages of Sleep and Waking in the Rat, Brain Res., 1983, vol. 273, pp. 133–141.

    Article  PubMed  CAS  Google Scholar 

  33. Dahan, L., Astier, B., Vautrelle, N., Urbain, N., Kocsis, B., and Chouvet, G., Prominent Burst Firing of Dopaminergic Neurons in the Ventral Tegmental Area during Paradoxical Sleep, Neuropsychopharmacol., 2007, vol. 32, pp. 1232–1241.

    Article  CAS  Google Scholar 

  34. Reid, M.S., Tafti, M., Nishino, S., Sampathkumaran, R., Siegel, J.M., and Mignot, E., Local Administration of Dopaminergic Drugs into the Ventral Tegmental Area Modulates Cataplexy in the Narcoleptic Canine, 1996, Brain Res., vol. 733, pp. 83–100.

    Article  PubMed  CAS  Google Scholar 

  35. Bagetta, G., Corasantini, M.T., Strongoli, M.C., Sacurada, S., and Nistico, G., Behavioral and ECoG Spectrum Power Effects after Intraventricular Injection of Drugs Altering Dopaminergic Transmission in Rats, Neuropharmacol., 1987, vol. 26, pp. 1047–1052.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E. A. Aristakesyan, 2011, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2011, Vol. 47, No. 4, pp. 298–305.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aristakesyan, E.A. Effect of apomorphine on the wakefulness-sleep cycle of the common frog Rana temporaria . J Evol Biochem Phys 47, 348–359 (2011). https://doi.org/10.1134/S0022093011040062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093011040062

Key words

Navigation