Skip to main content
Log in

Generation of reactive oxygen species and activity of antioxidants in hemolymph of the moth larvae Galleria mellonella (L.) (Lepidoptera: Piralidae) at development of the process of encapsulation

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Activities of enzymatic antioxidants—superoxide dismutase, glutathione-S-transferase, and catalase—as well as generation of reactive oxygen species (ROS) in lymph of the honeycomb moth Galleria mellonella L. were studied at development of the process of encapsulation of nylon implants. It has been established that as soon as 15 min after piercing of cuticle with the implant the capsule is formed on its surface. Active melanization of the capsule has been shown to last for 4 h. A statistically significant increase of the ROS generation in lymph and a decrease of the enzymatic antioxidant activities in the insect hemocytes have been revealed after the implant incorporation. The authors suggest that the key role in maintenance of the oxidation-reduction balance in hemolymph at development of the encapsulation process is played by non-oxidative antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ratcliffe, N.A. and Gagen, S.J., Studies on the in vivo Cellular Reactions of Insects: an Ultrastructural Analysis of Nodule Formation in Galleria mellonella, Tissue and Cell, 1977, vol. 9, pp. 73–85.

    Article  CAS  PubMed  Google Scholar 

  2. Lavine, M.D. and Strand, M.R., Insect Haemocytes and Their Role in Immunity, Insect Biochem. Mol. Biol., 2002, vol. 32, pp. 1295–1309.

    Article  CAS  PubMed  Google Scholar 

  3. Sugumaran, M., Comparative Biochemistry of Eumelanogenesis and the Protective Roles of Phenoloxidase and Melanin in Insects, Pigment Cell Res., 2002, vol. 15, pp. 2–9.

    Article  CAS  PubMed  Google Scholar 

  4. Slepneva, I.A., Komarov, D.A., Glupov, V.V., Serebrov, V.V., and Khramtsov, V.V., Influence of Fungal Infection on the DOPA-Semiquinone and DOPA-Quinone Production in Haemolymph ofGalleria mellonella Larvae, Biochem. Biophys. Res. Commun., 2003, vol. 300, pp. 188–191.

    Article  CAS  PubMed  Google Scholar 

  5. Komarov, D.A., Slepneva, I.A., Dubovskii, I.M., and Grizanova, E.V., Khramtsov, V.V., and Glupov, V.V., Generation of Superoxide Radical and Hydrogen Peroxide in Insect Hemolymph in the Course of Immune Response, Dokl. Biol. Sci., 2006, vol. 411, pp. 482–485.

    Article  CAS  PubMed  Google Scholar 

  6. Nappi, A.J. and Vass, E., Hydrogen Peroxide Production in Immune-Reactive Drosophila melanogaster, J. Parasitol., 1998, vol. 84, pp. 1150–1157.

    Article  CAS  PubMed  Google Scholar 

  7. Nappi, A.J., Vass, E., Frey, F., and Carton, Y., Superoxide Anion Generation in Drosophila during Melanotic Encapsulation of Parasites, Eur. J. Cell Biol., 1995, vol. 68, pp. 450–456.

    CAS  PubMed  Google Scholar 

  8. Whitten, M.M.A. and Ratcliffe, N.A.,In vitro Superoxide Activity in the Haemolymph of the West Indian Leaf Cockroach. Blaberus discoidalis, J. Insect Physiol., 1999, vol. 45, pp. 667–675.

    Article  CAS  PubMed  Google Scholar 

  9. Nappi, A.J., Vass, E., Frey, F., and Carton, Y., Nitric Oxide Involvement in Drosophila Immunity, Nitric Oxide, 2000, vol. 4, pp. 423–430.

    Article  CAS  PubMed  Google Scholar 

  10. Glupov, V.V., Slepneva, I.A., Serebrov, V.V., Khvoschevskaya, M.F., Martem’yanov, V.V., Dubovskiy, I.M., and Khramtsov, V.V., Influence of the Fungal Infection on the Production of Reactive Metabolites and the Antioxidant State of Haemolymph of Galleria mellonella Larvae, Russ. Entomol. J., 2003, vol. 12, pp. 103–108.

    Google Scholar 

  11. Lozinskaya, Ya.L., Slepneva, I.A., Khramtsov, V.V., and Glupov, V.V., Change of Antioxidant Status and of System Generation of Free Radicals in Hemolymph of Larvae Galleria mellonella in Microsporidiosis, Zh. Evol. Biokhim. Fiziol., 2004, vol. 40, pp. 99–103.

    Google Scholar 

  12. Lanaz-Mendoza, H., Hernandez-Martinez, S., Ku-Lopez, M., Rodriguez, M.D., Herrera-Ortiz, A., and Rodriguez, M.H., Superoxide Anion in Anopheles albimanus Hemolymph and Midgut Is Toxic to Plasmodium berghei Ookinetes, J. Parasitol., 2002, vol. 88, pp. 702–706.

    Google Scholar 

  13. Kumar, S., Cristophides, G.K., Cantera, R., Charles, B., Han, Y.S., Meister, S., Dimopoulos, G., Kafatos, F.C., and Barillas-Mury, C., The Role of Reactive Oxygen Species in Plasmodium melanotic Encapsulation on Anopheles gambiae, Proc. Nat. Acad. Sci. USA, 2003, vol. 100, pp. 14139–14144.

    Article  CAS  PubMed  Google Scholar 

  14. Nappi, A.J. and Christensen, B.M., Melanogenesis and Associated Cytotoxic Reactions: Applications to Insect Innate Immunity, Insect Biochem. Mol. Biol., 2005, vol. 35, pp. 443–459.

    Article  CAS  PubMed  Google Scholar 

  15. Glupov, V.V., Khvoshevskaya, M.F., Lozinskaya, Ya.L., Dubovskii, I.M., Martem’yanov, V.V., and Sokolova, Ju.Ya., Application of the Method NBT-Reduction for Studies on the Production of Reactive Oxigen Species in Insect Haemocytes, Cytobios, 2001, vol. 106, pp. 165–178.

    CAS  PubMed  Google Scholar 

  16. Carton, Y., Poiri’e, M., and Nappi, A.J., Insect Immune Resistance to Parasitoids, Insect Sci., 2008, vol. 15, pp. 67–87.

    CAS  Google Scholar 

  17. Zenkov, N.K., Lankin, V.Z., and Menshchikova, E.B., Okislitel’nyi stress: Biokhimicheskii i patofiziologicheskii aspekty (Oxidative Stress: Biochemical and Pathophysiological Aspects), Moscow, 2001.

  18. Felton, G.W. and Summers, C.B., Antioxidant Systems in Insects, Arch. Insect Biochem. Physiol., 1995, vol. 2, pp. 187–197.

    Article  Google Scholar 

  19. Wang, Y., Oberley, L.W., and Murhammer, D.W., Antioxidant Defense Systems of Two Lepidopteran Insect Cell Lines, Free Radical Biol. Med., 2001, vol. 30, pp. 1254–1262.

    Article  CAS  Google Scholar 

  20. Barbehenn, R.V., Gut-Based Antioxidant Enzymes in a Polyphagous and a Graminivorous Grasshopper, J. Chem. Ecol., 2002, vol. 28, pp. 1329–1347.

    Article  CAS  PubMed  Google Scholar 

  21. Mastore, M., Kohler, L., and Nappi, A.J., Production and Utilization of Hydrogen Peroxide Associated with Melanogenesis and Tyrosinase-Mediated Oxidations of DOPA and Dopamine, Free Radical Res. 2005, vol. 39, pp. 853–858.

    Article  Google Scholar 

  22. Winterbourn, C.C., Pichorner, H., and Kettle, A.J., Myeloperoxidase-Dependent Generation of a Tyrosine Peroxide by Neutrophils, Arch. Biochem. Biophys., 1997, vol. 338, pp. 15–21.

    Article  CAS  PubMed  Google Scholar 

  23. Rantala, M.J. and Roff, D.A., Analysis of the Importance of Genotypic Variation, Metabolic Rate, Morphology, Sex and Development Time on Immune Function in the Cricket, Gryllus firmus, J. Evol. Biol., 2006, vol. 19, pp. 834–843.

    Article  CAS  PubMed  Google Scholar 

  24. Dubovskii, I.M., Krukova, N.A., and Glupov, V.V., Phagocytic Activity and Encapsulation Rate of Galleria mellonella Larvae Hemocytes during Bacterial Infection by Bacillus thu-ringiensis, J. Invertebr. Pathol., 2008, vol. 98, no. 3, pp. 360–362.

    Article  Google Scholar 

  25. McCord, J.M. and Fridocich, I., Superoxide Dismutase: an Enzymic Function for Erythrocuprein (Hemocuprein), J. Biol. Chem., 1969, vol. 244, pp. 6049–6055.

    CAS  PubMed  Google Scholar 

  26. Habig, W.H., Pabst, M.J., and Jakoby, W.B., Glutathione-S-Transferases, J. Biol. Chem., 1974, vol. 249, pp. 7130–7139.

    CAS  PubMed  Google Scholar 

  27. Wang, Y., Oberley, L.W., and Murhammer, D.W., Evidence of Oxidative Stress Following the Viral Infection of Two Lepidopteran Insect Cell Lines, Free Radical Biol. Med., 2001, vol. 31, pp. 1448–1455.

    Article  CAS  Google Scholar 

  28. Dijalov, S., Skatchkov, M., and Bassenge, E., Spin Trapping of Superoxide Radicals and Peroxynitrite by 1-Hydroxy-3-carboxy-pyrrolidine and 1-Hydroxy-2,2,6,6-tetramethyl-4-oxopiperidine and the Stability of Corresponding Nitroxyl Radicals towards Biological Reductants, Biochem. Biophys. Res. Commun., 1997, vol. 320, pp. 230–237.

    Google Scholar 

  29. Jiang, Z.-Y., Woollard, A.C.S., and Wolff, S.P., Hydrogen Peroxide Production during Experimental Protein Glycation, FEBS Lett., 1990, vol. 268, pp. 69–71.

    Article  CAS  PubMed  Google Scholar 

  30. Bradford, M.M., A Rapid And Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  31. Ling, E. and Yi, X.Q., Prophenoloxidase Binds to the Surface of Hemocytes and Is Involved in Hemocyte Melanization in Manduca sexta, Insect Biochem. Mol. Biol., 2005, vol. 35, pp. 1356–1366.

    Article  CAS  PubMed  Google Scholar 

  32. Slepneva, I.A., Glupov, V.V., Sergeeva, S.V., and Khramtsov, V.V., EPR Detection of Reactive Oxygen Species in Hemolymph ofGalleria mellonella and Dendrolimus supe-rans sibiricus (Lepidoptera) Larvae, Biochem. Biophys. Res. Commun., 1999, vol. 264, pp. 212–215.

    Article  CAS  PubMed  Google Scholar 

  33. Oreste, A. and De Tullio, M.C., Ascorbic Acid: Much More Than Just an Antioxidant, Biochim. Biophys. Acta, 2002, vol. 1569, pp. 1–9.

    Google Scholar 

  34. Krishnan, N., Hyrš, P., and Šimek, V., Nitric Oxide Production by Hemocytes of Larva and Pharate Prepupa of Galleria mellonella in Response to Bacterial Lipopolysaccharide: Cytoprotective or Cytotoxic?, Comp. Biochem. Physiol., Part C, 2006, vol. 142, pp. 103–110.

    Google Scholar 

  35. Stoian, I., Oros, A., and Moldoveanu, E., Apoptosis and Free Radicals, Biochem. Mol. Med., 1996, vol. 59, pp. 93–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I. M. Dubovskii, E. V. Grizanova, E. A. Chertkova, I. A. Slepneva, D. A. Komarov, Ya. L. Vorontsova, V. V. Glupov, 2010, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2010, Vol. 46, No. 1, pp. 30–36.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubovskii, I.M., Grizanova, E.V., Chertkova, E.A. et al. Generation of reactive oxygen species and activity of antioxidants in hemolymph of the moth larvae Galleria mellonella (L.) (Lepidoptera: Piralidae) at development of the process of encapsulation. J Evol Biochem Phys 46, 35–43 (2010). https://doi.org/10.1134/S0022093010010044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093010010044

Key words

Navigation