Skip to main content
Log in

Study of structural-functional arrangement of the adenylyl cyclase signaling mechanism of action of insulin-like growth factor 1 revealed in muscle tissue of representatives of vertebrates and invertebrates

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Based on the earlier discovered by the authors adenylyl cyclase signaling mechanisms (ACSM) of action of insulin and relaxin, a study was performed of the existence of a similar action mechanism of another representative of the insulin superfamily-the insulin—like growth factor 1 (IGF-1) in the muscle tissue of vertebrates (rat) and invertebrates (mollusc). For the first time there was detected participation of ACSM in the IGF-1 action, including the six-component signaling cascade: receptor tyrosine kinase → Gi-protein (βγ-dimer) → phosphatidylinositol-3-kinase (PI-3K) → protein kinase Cζ (PKCζ) → Gs-protein → adenylyl cyclase. By structural-functional organization at postreceptor stages, it coincides completely with that of insulin and relaxin, which we revealed in rat skeletal muscle. In smooth muscle of the mollusc Anodonta cygnea this ACSM of action of IGF-1 has only one difference-the protein kinase C included in this mechanism is represented not by the PKCζ isoform, but by another isoform close to PKCε of the vertebrate brain. Earlier we revealed the same differences in muscles of this mollusc in the ACSM of action of insulin and relaxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steiner, D.F., Chan, S.J., Docherty, K., et al., Evolution of Polypeptide Hormones and Their Precursor Processing Mechanism, Evolution and Tumor Pathology of the Neuroendocrine System, Falkmer, S., Hakanson, R., and Sandler, F., Eds., vol. 12, Elsevier Science Publishers BV, 1984, pp. 203–223.

  2. Chun, S.J., Nagamatsu, S., Cao, Q.P., and Steiner, D.F., Structure and Evolution of Insulin and Insulin-Like Growth Factors in Chordates, Progress in Brain Research, Joosse, J., Buijs, R.M., and Tilders, F.J.H., Eds., vol. 92, Elsevier Science Publishers BV, 1992, pp. 15–24.

  3. Murray-Rust, J., Macleod, A.N., Blundell, T.L., and Wood, S.P., Structure and Evolution of Insulins: Implifications for Receptor Binding, BioEssays, 1992, vol. 14, pp. 325–331.

    Article  PubMed  CAS  Google Scholar 

  4. Pertseva, M.N., Shpakov, A.O., Plesneva, S.A., and Kuznetsova, L.A., A Novel View on the Mechanisms of Action of Insulin and Other Insulin Supcrfamily Peptides: Involvement of Adenylyl Cyclase Signaling System, Comp. Biochem. Physiol., 2003, vol. 134, pp. 11–36.

    CAS  Google Scholar 

  5. Patel, T.B., Signal Transmembrane Spanning Heterotrimeric G-Protein Coupled Receptors and Their Signaling Cascades, Pharmacol. Rev., 2004, vol. 56, pp. 371–385.

    Article  PubMed  CAS  Google Scholar 

  6. Plesneva, S.A., Shpakov, A.O., Rusakov, Yu.I., Kuznetsova, L.A., and Pertseva, M.N., The Involvement of Adenylate Cyclase Signaling System in the Action of Insulin, Epidermal Growth Factor and Insulin-Like Peptide of Mollusc, Proceedings of 1th Conference of European Comparative Endocrinologists, Spain (September 5–10, 1994), Roubos, W.W., Ed., Universiteit Cordoba, Abstract 135, Cordoba: Univ., 1994.

  7. Pertseva, M.N., Plesneva, S.A., Shpakov, A.O., Rusakov, Yu.I., and Kuznetsova, L.A., Involvement of Adenylyl Cyclase Signaling System in the Action of Insulin and Mollusc Insulin-Like Peptide, Comp. Biochem. Physiol., 1995, vol. 112, pp. 689–695.

    Article  CAS  Google Scholar 

  8. Pertseva, M.N., Shpakov, A.O., and Plesneva, S.A., Current Advances in Studies of Signaling Mechanisms of Action of Insulin and Related Peptides, J. Evol. Biochem. Physiol., 1996, vol. 32, pp. 259–277.

    Google Scholar 

  9. Pertseva, M.N., Plesneva, S.A., Kuznetsova, L.A., Shpakov, A.O., and Derkach, K.V., On the Tyrosine Kinase Mechanism of the Novel Effect of Insulin and Insulin-Like Growth Factor 1. Stimulation of the Adenylyl Cyclase System in Muscle Tissues, Biochem. Pharmacol., 1996, vol. 52, pp. 1867–1874.

    Article  PubMed  CAS  Google Scholar 

  10. Plesneva, S.A., Pospelova, T.V., Kuznetsova, L.A., Bykova, T.V., Shpakov, A.O., and Pertseva, M.N., A Novel Insulin-Competent Adenylyl Cyclase Signaling System as a Possible Mechanism of Antiapoptotic Action of Insulin and Insulin-Like Growth Factor 1, Dokl. Akad. Nauk, 2003, vol. 393, pp. 551–553.

    Google Scholar 

  11. Plesneva, S.A., Shpakov, A.O., Kuznetsova, L.A., and Pertseva, M.N., A Dual Role of Protein Kinase C in Insulin Signal Transduction via Adenylyl Cyclase Signaling System in Muscle Tissues of Vertebrates and Invertebrates, Biochem. Pharmacol., 2001, vol. 61, pp. 1277–1291.

    Article  PubMed  CAS  Google Scholar 

  12. Pertseva, M.N., Shpakov, A.O., Kuznetsova, L.A., and Omeljaniuk, E., Adenylyl Cyclase Signaling Mechanisms of Insulin and Relaxin Action: Similarities and Differences, Gen. Biol. Int., 2006, vol. 30, pp. 533–540.

    CAS  Google Scholar 

  13. Shpakov, A.O., Shipilov, V.N., Bondareva, V.M., Kuznetsova, L.A., Plesneva, S.A., Rusakov, Yu.I., and Pertseva, M.N., Regulating Action of InsulinRelated Neuropeptides of Mollusc Anodonta cygnea on Functional Activity of Adenylyl Cyclase Signaling System, Neirokhimiya, 2005, vol. 22, no. 1, pp. 28–37.

    Google Scholar 

  14. Butler, A.A., Yakar, S., Gewolb, I.H., Karas, M., Okubo, Y., and Le Roith, D., Insulin-Like Growth Factor-1 Receptor Signal Transduction: At the Interface between Physiology and Cell Biology, Comp. Biochem. Physiol., 1992, vol. 121, pp. 19–26.

    Google Scholar 

  15. Hallak, H., Seiler, A.E., Green, J.S., Ross, B.N., and Rubin, R., Association of Heterotrimeric G(i) with Insulin-Like Growth Factor-1 Receptor. Release of G(beta-gamma) Subunits upon Receptor Activation, J. Biol. Chem., 2000, vol. 275, pp. 2255–2258.

    Article  PubMed  CAS  Google Scholar 

  16. Dalle, S., Imamura, T., Vollenwieder, P., and Olefsky, J.M., Insulin and Insulin-Like Growth Factor I Receptors Utilize Different G Protein Signaling Components, J. Biol. Chem., 2001, vol. 276, pp. 15 688–15 695.

    Article  CAS  Google Scholar 

  17. Kuemmerle, J.F. and Murthy, K.S., Coupling of the IGF-1 Receptor Tyrosine Kinase to Gi2 in Human Intestinal Smooth Muscle: Gβγ-Dependent MAP Kinase Activation and Growth, J. Biol. Chem., 2001, vol. 276, pp. 7187–7194.

    Article  PubMed  CAS  Google Scholar 

  18. Kidwai, A.M., Radcliffe, M.A., Lee, F.Y., and Daniel, E.E., Isolation and Properties of Skeletal Muscle Membranes, Biochim. Biophys. Acta, 1973, vol. 298, pp. 593–607.

    Article  PubMed  CAS  Google Scholar 

  19. Salomon, J., Londos, C., and Rodbell, M., A Highly Sensitive Adenylate Cyclase Assay, Anal. Biochem., 1974, vol. 58, pp. 541–548.

    Article  PubMed  CAS  Google Scholar 

  20. Milligan, G., Techniques Used in the Identification and Analysis of Function of Pertussis ToxinSensitive Guanine Nucleotide Binding Proteins, Biochem. J., 1988, vol. 255, pp. 1–13.

    PubMed  CAS  Google Scholar 

  21. Reisine, T., Pertussis Toxin in the Analysis of Receptor Mechanisms, Biochem. Pharmacol., 1990, vol. 39, pp. 1499–1504.

    Article  PubMed  CAS  Google Scholar 

  22. Sossin, W.S., Chen, C.S., and Toker, A., Stimulation of the Insulin Receptor Activates and Downregulates the Ca2+-Independent Protein Kinase C, Apl-II through a Wortmannin-Sensitive Signaling Pathway in Aplysia, J. Neurochem., 1996, vol. 67, pp. 220–228.

    Article  PubMed  CAS  Google Scholar 

  23. Mercado, L., Cao, A., Barcia, R., and RamosMartinez, J.I., Regulatory Properties of p105: A Novel PKC Isoenzyme in Mantle Tissues from Marine Mussels, Biochem. Cell Biol., 2002, vol. 80, pp. 771–775.

    Article  PubMed  CAS  Google Scholar 

  24. Okamoto, J., Okamoto, T., Murayama, J., Hayashi, J., Ogata, E., and Nashimoto, I., GTP-Binding Protein Activator Sequences in the Insulin Receptor, FEBS Lett., 1993, vol. 334, pp. 143–148.

    Article  PubMed  CAS  Google Scholar 

  25. Shpakov, A.O., Homology of Primary Structure of the Third Cytoplasmic Domains of Receptors of the Rhodopsin Type and Cytoplasmic Tail of β-Subunits of Insulin Receptor, Tsitologiya, 1996, vol. 38, pp. 1179–1190.

    CAS  Google Scholar 

  26. Pertseva, M.N., Hypothesis about the Key Coordinating Role of the Adenylyl Cyclase Signaling Mechanism and cAMP in Regulatory Action of Peptides of the Insulin Superfamily on Fundamental Cellular Processes: Cellular Growth, Apoptosis, Metabolism, Zh. Evol. Biokhim. Fiziol., 2000, vol. 36, pp. 496–503.

    Google Scholar 

  27. Plesneva, S.A., Barkan, R.S., Reshetnikova, G.F., Kuznetsova, L.A., and Pertseva, M.N., Adenylyl Cyclase Signaling Mechanism in Mitogenic Action of Insulin, the Insulin-Like and Epidermal Growth Factors, Dokl. Akad. Nauk, 1999, vol. 368, pp. 833–838.

    PubMed  CAS  Google Scholar 

  28. Kooijman, R., Regulation of Apoptosis by InsulinLike Growth Factor I (IGFI), Cytokine Growth Factor, 2006, vol. 17, pp. 305–323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S. A. Plesneva, L. A. Kuznetsova, A. O. Shpakov, T. S. Sharova, M. N. Pertseva, 2008, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2008, Vol. 44, No. 5, pp. 459–466.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plesneva, S.A., Kuznetsova, L.A., Shpakov, A.O. et al. Study of structural-functional arrangement of the adenylyl cyclase signaling mechanism of action of insulin-like growth factor 1 revealed in muscle tissue of representatives of vertebrates and invertebrates. J Evol Biochem Phys 44, 542–551 (2008). https://doi.org/10.1134/S0022093008050022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093008050022

Key words

Navigation