Skip to main content
Log in

Imitational modeling of process of evolution: From organic macromolecules to protocell and animal cell

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

A dynamic imitational model of initial stages of cell evolution has been developed based on role of environmental calcium concentration. The model is designed from our hypothesis about the medium of the appearance of protocells, which could be potassium water reservoirs rather than sea salt water with its predominance of sodium salts. The necessary elements of the appearance of the protocells served organic molecules, code of their synthesis, and formation of macromolecules under favorable ion concentration in environment: a high K+ and Mg2+ and a low Na+ concentration. The model is based on an assumption that one of the first stages in evolution of life was the appearance in the potassium-magnesium water reservoirs of organic molecules capable for self-replication on the basis of genetic code and formation of protocell with the potassium cytoplasm. The model has demonstrated necessity of formation of cell envelope for development of the protocell. Replacement of the dominant cation in water reservoirs—potassium by sodium—required the appearance of ion-transporting devices in plasma membrane and their participation in adaptation of cells to environment. This stage of evolution was accompanied by the most important morphofunctional event—formation of the plasma membrane instead of cell envelope. The membrane provided the ion asymmetry in the cell (preservation of K+ in it) relatively to the sodium external medium for maintaining optimal intracellular medium. In the model system, predecessors of animal cells elaborated mechanism of maintenance of the potassium cytoplasm with the sodium counterion dominating in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oparin, A.I., Vozniknovenie i nachal’noe razvitie zhizni (Origin and Initial Development of Life), Moscow, 1966.

  2. Fox, S. and Dose, K., Molekulyarnaya evolyutsiya i vozniknovenie zhizni (Molecular Evolution and Origin of Life), Moscow, 1975.

  3. Galimov, E.M., Fenomen zhizni: mezhdu ravnovesiem i ne-lineinost’yu. Proiskhozhdenie i printsipy evolyutsii (Phenomenon of Life: between Equilibrium and Non-Linearity. Origin and Principles of Evolution), Moscow, 2001.

  4. Natochin, Yu.V., Role of Sodium Ions as a Stimulus in Evolution of Cells and Multicellular Animals, Paleontol., 2005, no. 4, pp. 19–24.

  5. Natochin, Yu.V., Physico-Chemical Dominants of Physiological Evolution: from Protocell to Man, Ross. Fiziol. Zh. im. I.M. Sechenova, 2006, vol. 92, pp. 57–72.

    PubMed  CAS  Google Scholar 

  6. Forrester, J.W., Industrial Dynamics, Portland, 1961.

  7. Sterman, J.W., Learning in and about Complex Systems, System Dynam. Rev., 1994, vol. 10, pp. 291–330.

    Article  Google Scholar 

  8. Goldberg, D.E., Genetic Algorithm in Search, Optimization and Machine Learnings, Addisin, 1989.

  9. Menshutkin, V.V., Experience of Imitation of Evolutionary Process on Computer, Zh. Evol. Biokhim. Fiziol., 1977, vol. 13. pp. 545–555.

    PubMed  CAS  Google Scholar 

  10. Menshutkin, V.V., Computer Imitation of Different Types of Evolutionary Process, Zh. Evol. Biokhim. Fiziol., 2003, vol. 64, pp. 328–336.

    CAS  Google Scholar 

  11. Natochin, Yu.V. and Menshutkin, V.V., Problems of Evolution of Functions in Physiology, Ecology, and Technology, Zh. Evol. Biochim. Fiziol., 1993, vol. 29, pp. 434–446.

    Google Scholar 

  12. Ginetsinskii, A.G., Fiziologicheskie mekhanizmy vodno-solevogo ravnovesiya (Physiological Mechanisms of Water—Salt Equilibrium), Moscow—Leningrad, 1963.

  13. Prosser, L., Inorganic Ions, Sravnitel’nayafiziologiyazhivotnykh (Comparative Animal Physiology), Moscow, 1977, vol. 1, pp. 177–240.

    Google Scholar 

  14. Shnol, S.E., Fiziko-khimicheskie faktory biologicheskoi evolyutsii (Physico-Chemical Factors of Biological Evolution), Moscow, 1979.

  15. Spirin, A.S., Rinonucleic Acids as the Central Chain of the Living Matter, Vestn. RAN, 2003, vol. 73, pp. 117–127.

    CAS  Google Scholar 

  16. Chetverin, A.V., Chetverina, H.V., and Munishkin, A.V., On the Nature of Spontaneous RNA Synthesis by Qβ Replicase, J. Mol. Biol., 1991, vol. 222, pp. 3–9.

    Article  PubMed  CAS  Google Scholar 

  17. Chetverina, H.V. and Chetverin, A.B., Cloning of RNA Molecules in vitro, Nucl. Acids Res., 1993, vol. 21, pp. 2349–2353.

    Article  PubMed  CAS  Google Scholar 

  18. Spirin, A.S. and Gavrilova, L.P., Ribosoma (Ribosome), Moscow, 1971.

  19. Schwartz, T. and Blobel, G., Structural Basis of the Function of the Beta Subunit of the Eukaryotic Signal Recognition Particle Receptor, Cell, 2003, vol. 112, pp. 793–803.

    Article  PubMed  CAS  Google Scholar 

  20. Individual-Based Models—an Approach in Ecology, DeAngeles, D.L. and Gross, J.L., Eds., New York, 1992.

  21. Salop, L.I., Istoriya Zemli v dokembrii (History of Earth in the Precambrian), Leningrad, 1982.

  22. Holland, H., Khimicheskaya evolyutsiya okeanov i atmosfery (Chemical Evolution of the Oceans and Atmosphere), Moscow, 1989.

  23. Natochin, Yu.V. and Akhmedov, A.M., Physiological and Paleogeochemical Arguments for a New Hypothesis of the Stimulus of Evolution of Eukaryotes and Multicellular Organisms, Dokl. AN, 2005, vol. 400, pp. 836–839.

    Google Scholar 

  24. Iordanskii, N.N., Evolyutsiya zhizni (Evolution of Life), Moscow, 2001.

  25. Spirin, A.S., Biosynthesis of Proteins, World of RNA, and Origin of Life, Vestn. RAN, 2001, vol. 71, pp. 320–328.

    CAS  Google Scholar 

  26. Rozanov, A.Yu., Bacterial Paleontology, Sedimentogenesis, and Early Stages of Evolution of Biosphere, Paleontol. Zh., 2003, pp. 41–49.

  27. Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (Development of Evolutionary Ideas in Biology), Moscow, 2004.

  28. Tatarinov, L.P., Current Trends in Development of Phylogenetic Studies, Vestn. RAN, 2004, vol. 74, pp. 515–523.

    Google Scholar 

  29. Severtsov, A.N., Zakonomernosti evolyutsii (Regularities of Evolution), Moscow—Leningrad, 1939.

  30. Sokolov, B.S., Ocherki stanovleniya vida (Essays of Establishment of the Species), Moscow, 1977.

  31. Seravin, K.N. and Gudkov, A.V., Trikhoplaks adkherens (tip Placozoa)—odno iz samykh primitivnykh mnogokletochnykh zhivotnykh (Trichoplax adhaerens (Type Placozoa) Is One of the Most Primitive Multicellular Animals), St. Petersburg, 2005.

  32. Saveliev, S.V., Proiskhozhdenie mozga (Origin of Brain), Moscow, 2005.

  33. Severtsov, A.N., Sovremennye zadachi evolyutsionnoi teorii (Current Tasks of Evolutionary Theory), Moscow, 1914.

  34. Florken, M., Biokhimicheskaya evolyutsiya (Biochemical Evolution), Moscow, 1947.

  35. Margelis, L., Rol’simbioza v evolyutsii kletki (Role of Symbiosis in Evolution of the Cell), Moscow, 1983.

  36. Hengeveld, R. and Fedonkin, M.A., Causes and Consequences of Eukaryotization through Mutualistic Endosymbiosis and Compartmentalization, Acta Biotheoret., 2004, vol. 52, no. 2, pp. 105–154.

    Article  CAS  Google Scholar 

  37. Hochachka, P. and Somero, J., Strategiya biokhimicheskoi adaptatsii (Strategy of Biochemical Adaptation), Moscow, 1977.

  38. Evans, J.V., Harris, H., and Warren, F.L., The Distribution of Haemoglobin and Potassium Types in British Breeds of Sheep, Proc. Roy. Soc. Lond. Biol. Sci., 1958, vol. 149B, pp. 249–262.

    Article  Google Scholar 

  39. Natochin, Yu.V. and Parnova, R.G., Osmolality and Electrolyte Concentration of Hemolymph and the Problem of Ion and Volume Regulation of Cells in Higher Insects, Comp. Biochem. Physiol., 1987, vol. 88A, pp. 563–570.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V. V. Menshutkin, Yu. V. Natochin, 2008, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2008, Vol. 44, No. 4, pp. 435–442.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menshutkin, V.V., Natochin, Y.V. Imitational modeling of process of evolution: From organic macromolecules to protocell and animal cell. J Evol Biochem Phys 44, 514–523 (2008). https://doi.org/10.1134/S0022093008040133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093008040133

Key words

Navigation