Skip to main content
Log in

Changes of physiological and biochemical characteristics of rat erythrocytes after blood loss

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In experiments on Wistar male rats, changes are studied of erythrocyte hematological, biochemical (activities of transport ATPases), and rheological properties (capability for aggregation and deformability) 7 days after bloodletting of 12–15% of the total blood mass. It has been shown that alongside with an elevation of erythrocyte volume and of the number of immature cells—reticulocytes, there was a statistically significant increase of Na,K-ATPase and Ca-ATPase activities in the whole erythrocytes and in their membrane preparations—ghosts, the increment of activity in the case of Na,K-ATPase being essentially higher in the whole cells. This indicates the appearance of an enzyme activator inside the erythrocytes. There are also revealed a decrease of firmness of erythrocyte aggregates, a deceleration of spontaneous aggregation, and an increase of index of erythrocyte deformability. The conclusion is made that changes of erythrocyte rheological properties are interconnected with changes of the Na,K-ATPase activity and are aimed at optimization of blood circulation in large vessels and capillary network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chernyshov, V.A., Yushkov, B.G., Sumin, M.N., Tyumentseva, N.V., et al., System of Blood and Adaptation of the Organism to Extreme Factors, Ross. Fiziol. Zh., 2004, vol. 90, pp. 1193–1202.

    Google Scholar 

  2. Medvedeva, I.A. and Maslova, M.M., Activities of Membrane Enzymes under Various Stress Actions, Sechenov Fiziol. Zh., 1994, vol. 80, pp. 232–237.

    Google Scholar 

  3. Maslova, M.N., Molecular Mechanisms of Stress-Reaction, Ross. Fiziol. Zh., 2005, vol. 91, pp. 1320–1328.

    CAS  Google Scholar 

  4. Cordero, J.F., Rodriguez, P.J., and Romero, P.J., Differences in Intramembrane Particle Distribution in Young and Old Human Erythrocytes, Cell. Biol. Int., 2004, vol. 28, no. 6, pp. 423–431.

    Article  PubMed  CAS  Google Scholar 

  5. Yakubowska-Solarska, B. and Solski, J., Sialic Acids of Young and Old Red Blood Cells in Healthy Subjects, Med. Sci. Monit., 2000, vol. 6, no. 5, pp. 871–874.

    Google Scholar 

  6. Bartosz, G., Niewiarowska, J., and Judkievicz, G., Decreased Deformability in Aging Erythrocytes, Biochim. Biophys. Acta, 1992, vol. 563, no. 1, pp. 282–284.

    Google Scholar 

  7. Tsukahara, T., Post Hemorrhagic Anemia, Nippon Rinsho., 1991, vol. 49, pp. 732–735.

    PubMed  CAS  Google Scholar 

  8. Zyuz’kov, G.N., Abramova, E.V., Dygai, A.M., and Goldberg, E.D., Reaction of Erythroid Stem of Blood Formation and Mechanisms of their Development during Blood Loss, Byul. Eksp. Biol. Med., 2005, vol. 139, no. 1, pp. 32–37.

    Article  Google Scholar 

  9. Gitelzon, I.I. and Terskov, I.A., Eritrogramma kak metod klinicheskogo issledovaniya krovi (Erythrogramm as a Method of Clinical Study of Blood), Krasnoyarsk, 1959.

  10. Kazennov, A.M., Maslova, M.N., and Shalabodov, A.D., Study of Na,K-ATPase Activity in Mammalian Erythrocytes, Biokhimiya, 1984, vol. 49, pp. 1095–1098.

    Google Scholar 

  11. Dodge, G.T., Mitchell, C., and Hanahan, D.J., The Preparation and Chemical Characteristics of Hemoglobin Free Ghosts of Human Erythrocytes, Arch. Biochem. Biophys., 1963, vol. 100, pp. 119–130.

    Article  PubMed  CAS  Google Scholar 

  12. Tukhvatulin, R.T. and Anosova, N.V., Reversible Aggregation of Human and Animal Erythrocytes: Studies in Blood Microvolume, Tromb. Gemost. Reol., 2000, no. 2, pp. 19–21.

  13. Johnson, R.M., Ektacytometry of Red Blood Cells, Methods Enzymol., 1989, vol. 173, pp. 35–54.

    PubMed  CAS  Google Scholar 

  14. Katyukhin, L.N., Ektacytometry of Erythrocytes of the Rats of SHR, WKY, and Wistar Lines, Zh. Evol. Biokhim. Fiziol., 1994, vol. 30, pp. 232–236.

    Google Scholar 

  15. Kazennov, A.M., Katyukhin, L.N., Maslova, M.N., Barvitenko, N.N., Rustamov, F.A., and Tavrovskaya, T.V., Changes of Erythrocyte Properties in Early Postnatal Ontogenesis in Rats, Zh. Evol. Biokhim. Fiziol., 2001, vol. 37, pp. 154–156.

    PubMed  CAS  Google Scholar 

  16. Kazennov, A.M., Katyukhin, L.N., Maslova, M.N., Dubrovskii, E.A., Skverchinskaya, E.A., Rustamov, F.A., and Tavrovskaya, T.V., The Effect of Stress and Inhibition of Acetylcholinesterase in vivo on Properties of Na,K-ATPase of Rat Erythrocytes, Zh. Evol. Biokhim. Fiziol., 1999, vol. 35, pp. 29–32.

    PubMed  CAS  Google Scholar 

  17. Kazennov, A.M., Prochazka, J., Pelouch, V., Ostadal, B., and Maslova, M.N., Transport ATPases in the Acclimatization to Intermittent Altitude Hypoxia, Physiol. Bohemoslov., 1986, vol. 35, pp. 406–413.

    PubMed  CAS  Google Scholar 

  18. Tukhvatulin, R.T., Levtov, V.A., Shuvaeva, V.N., et al., Aggregation of Erythrocytes in the Blood Placed into Macro-and Microcuvettes, Fiziol. Zh. SSSR, 1986, vol. 72, pp. 775–785.

    PubMed  CAS  Google Scholar 

  19. Mohandas, N., Clark, M.R., Jacobs, M.S., and Shohe, S.B., Analysis of Factors Regulating Erythrocyte Deformability, J. Clin. Invest., 1980, vol. 66, pp. 563–573.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M. N. Maslova, A. M. Kazennov, L. N. Katyukhin, A. V. Novozhilov, E. A. Skverchinskaya, T. V. Tavrovskaya, 2007, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2007, Vol. 43, No. 5, pp. 414–418.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslova, M.N., Kazennov, A.M., Katyukhin, L.N. et al. Changes of physiological and biochemical characteristics of rat erythrocytes after blood loss. J Evol Biochem Phys 43, 495–499 (2007). https://doi.org/10.1134/S0022093007050064

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093007050064

Key words

Navigation