Skip to main content
Log in

Motor activity of infusoria: Theoretical and applied aspects

  • Problem Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The article considers morpho-functional organization of cilia—the infusorian locomotion organs—and shows a great complexity of motor behavior of these unicellulars. The problem of control of locomotor activity of infusorian as the single organism is discussed, and the conclusion is made that the system of control of movements is to be multilevel and to include receptor, afferent, central, efferent, and effector links. The role of central integrator and coordinator of motor behavior can be played by the cell nucleus (macronucleus) closely connected with periphery by cytoskeleton dynamic elements. The problem of fight with infusoria parasitizing in the human and animal bodies by impairing motor activity of these unicellulars is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Protisty (Protozoa), St. Petersburg, 2000.

  2. Ivanov, A.V., Polyanskii, Yu.I., and Strelkov, A.A., Bol’shoi prakticum po zoologii bespozvonochnykh (Large Manual on Invertebrate Zoology), Moscow, 1958.

  3. Párducz, B., Rizphysiologische Untersuchungen an Ziliaten. I. Über das Actionssystem von Paramecium, Acta Microbiol. Acad. Sci. Hung., 1954, vol. 1, pp. 175–221.

    PubMed  Google Scholar 

  4. Chen, Y.-T., Studies on the Neuromotor System of Stylonychia postulata and Stylonychia mytilus, J. Morphol., 1944, vol. 75(3), pp. 335–345.

    Article  Google Scholar 

  5. Bütschli, O., Protozoa, Vorlesungen uber vergleichenden Anatomie, Berlin, 1910.

  6. Machemer, H., Filmbildanalysen 4 verschiedener Schlagmuster der Marginalcirren von Stylonychia, J. Comp. Physiol., 1969, vol. 62A(2), pp. 183–196.

    Google Scholar 

  7. Satir, P. and Barkolow, K., Cilia: Structure and Molecular Biology, Ciliates: Cells as Organisms, Stuttgart-Jena; New York, 1996, pp. 355–377.

    Google Scholar 

  8. Karpov, S.A., Stroenie kletki protistov (Structure of Protozoan Cell), St. Petersburg, 2001.

  9. Taylor, H.C., Guevara, E., and Satir, P., Computer Modeling: A Versatile Tool for the Study of Structure and Function in Cilia, Eurrop. J. Protistol., 1998, vol. 34, pp. 239–243.

    Google Scholar 

  10. Sui, H. and Downing, K.H., Molecular Architecture of Axonemal Microtubule Doublets Revealed By Cryo-Electron Tomography, Nature, 2006, vol. 442, pp. 475–478.

    Article  PubMed  CAS  Google Scholar 

  11. Hausman, K., Protozoologiya (Protozoology), Moscow, 1988.

  12. Seravin, L.N., Contractile Systems of Protozoa, Dvizhenie i povedenie odnokletochnykh zhivotnykh (Locomotion and Behavior of Unicellular Animals), Leningrad, 1978, pp. 3–11.

  13. Sviderskii, V.L., Lokomotsiya nasekomykh. Neurofiziologicheskie aspekty (Insect Locomotion. Neurophysiological Aspects), Leningrad, 1988.

  14. Ueyama, S., Katsumara, H., Suzaki, T., and Nakaoka, Y., Halteria grandinella: A Rapid Swimming Ciliate with a High Frequency of Ciliary Beating, Cell Motility and Cytoskeleton, 2005, vol. 60(4), pp. 214–221.

    Article  Google Scholar 

  15. Eckert, R., Bioelectric Control of Ciliary Activity, Science, 1972, vol. 176, pp. 473–481.

    Article  PubMed  CAS  Google Scholar 

  16. Naitoh, Y., Bioelectric Basis of Behavior in Protozoa, Amer. Zoologist, 1974, vol. 14, pp. 883–893.

    CAS  Google Scholar 

  17. Machemer, H. and Pyer, J.E., de, Swimming Sensory Cells: Electrical Membrane Parameter, Receptor Properties and Motor Control in Ciliated-Protozoa, Verch. Deutsch. Zool. Ges., 1977, pp. 86–110.

  18. Machemer, H., Electrophysiology, Paramecium, Berlin, 1988, pp. 185–215.

  19. Andrivon, C., Membrane Control of Ciliary Movement in Ciliates, Biol. Cell, 1988, vol. 63, pp. 133–142.

    Article  PubMed  CAS  Google Scholar 

  20. Machemer, H. and Teunis, P.F.M., Sensorimotor Coupling and Motor Responses, Ciliates: Cells as Organisms, Stuttgart-Jena; New York, 1996, pp. 379–402.

    Google Scholar 

  21. Banchetti, R. and Erra, F., The Behavior of Unicellular Eukaryotes, Rev. Biol., 2002, vol. 95(3), pp. 473–489.

    Google Scholar 

  22. Hennesey, T., Machemer, H., and Nelson, D.L., Injected Cyclic AMP Increases Ciliary Beat Frequency in Conjunction with Membrane Hyperpolarization, Eur. J. Cell Biol., 1985, vol. 36, pp. 153–156.

    Google Scholar 

  23. Bonini, N.M., Gustin, M.C., and Nelson, D.L., Regulation of Ciliary Motility by Membrane Potential in Paramecium: A Role for Cyclic AMP, Cell Motility and Cytoskeleton, 1986, vol. 6, pp. 256–272.

    Article  CAS  Google Scholar 

  24. Nakayoka, Y. and Machemer, H., Effects of Cyclic Nucleotides and Intracellular Ca2+ on Voltage-Activated Ciliary Beating in Paramecium, J. Comp. Physiol., 1990, vol. 166A, pp. 401–406.

    Google Scholar 

  25. Fabczak, H., Walerczyk, M., Sikora, J., and Fabczak, S., Ciliary and Flagellar Activity Control in Eukaryotic Cell by Second Messengers: Calcium Ions and Cyclic Nucleotides, Acta Protozool., 1999, vol. 38, pp. 87–96.

    CAS  Google Scholar 

  26. Nogushi, M., Kurahashi, S., Kamachi, H., and Inoue, H., Control of the Ciliary beat by Cyclic Nucleotides in Intact Cortical Sheets from Paramecium, Zool. Science, 2004, vol. 21(12), pp. 1167–1175.

    Article  Google Scholar 

  27. Krüger, T.P., Treptau, T., Froissard, M., and Plattner, H., Multigene Family Encoding 3′,5′-Cyclic-GMP-Dependent Protein Kinases in Paramecium tetraurelia Cells, Eukaryot Cell, 2006, vol. 5(1), pp. 77–91.

    Article  PubMed  CAS  Google Scholar 

  28. Litvin, V.G., Samigullin, D.V., and Kotov, N.V., Study of Reaction of Paramecium caudatum Defensive Acceleration, Biofizika, 1999, vol. 44(2), pp. 269–302.

    Google Scholar 

  29. Kotov, N.V., Volchenko, A.M., Davydov, D.A., Kostyleva, E.K., Sadykov, I.Kh., and Platov, K.V., Motor Activity of Paramecia, Biofizika, 2000, vol. 45, no. 3, pp. 514–519.

    PubMed  CAS  Google Scholar 

  30. Smith, S., The Limits of Educability in Paramecium, J. Comp. Neurol. Psychol., 1908, vol. 18(5), pp. 499–510.

    Article  Google Scholar 

  31. Ishikawa, N. and Hota, M., Interaction of Two Swimming Paramecia, J. Exp. Biol., 2006, vol. 209(22), pp. 4452–4463.

    Article  PubMed  Google Scholar 

  32. Luporini, P., Cellular Interactions in Conjugation of Ciliated Protozoa, Cell interactions and differentiation, Naples, 1986, pp. 11–26.

  33. Toa, N., Deforce, L., Romanowski, M., Meza-Keuthen, S., Song, P.-S., and Furuya, M., Stentor and Blepharisma Photoreceptor: Structure and Function, Acta Protozool., 1994, vol. 33, pp. 199–211.

    Google Scholar 

  34. Song, P.-S., Light Signal Transduction in Ciliate Stentor and Blepharisma. I. Structure and Function of the Photoreceptors, Biophysics of Photoreception. Molecular and Phototransductive Events, Taddei-Ferretti, C., Ed., Singapore, et al., 1977, pp. 48–66.

  35. Kuhlmann, H.-W., Photomovements in Ciliated Protozoa, Naturwiss, 1998, vol. 85, pp. 143–154.

    Article  CAS  Google Scholar 

  36. Houten, J., van, Chemosensory Transduction in Paramecium, Europ. J. Protostiol., 1998, vol. 34, pp. 301–307.

    Google Scholar 

  37. Fabczak, H., Contribution on Phosphoinositide-Dependent Signal Pathway to Photomotility in Blepharisma, J. Photochem. Photobiol. Biol., 2000, vol. 55B, pp. 120–127.

    Article  Google Scholar 

  38. Wood, C.R. and Hennessy, T.M., PPNDS Is an Agonist, not an Agonist, from the ATP Receptor of Paramecium, J. Exp. Biol., 2003, vol. 206, pp. 627–636.

    Article  PubMed  CAS  Google Scholar 

  39. Mitarai, A. and Nakaoka, Y., Photosensitive Signal Transduction Induce Membrane Hyperpolarization in Paramecium bursaria, Photochemistry and Photobiol., 2005, vol. 81(6), pp. 1424–1426.

    Article  CAS  Google Scholar 

  40. Ladenburger, E.-M., Korn, I., Kasielke, N., Wassmer, T., and Plattner, H., An Ins(1,4,5)P3 Receptor in Paramecium Is Associated with the Osmoregulatory System, J. Cell. Sci., 2006, vol. 119, pp. 3705–3717.

    Article  PubMed  CAS  Google Scholar 

  41. Prodesta, A., Marangoni, R., Villani, C., and Colombetti, G., A Rhodopsin-Like Molecule on the Plasma Membrane of Fabrea salina, J. Eukar. Microbiol., 1994, vol. 41, pp. 565–569.

    Article  Google Scholar 

  42. Nagel, U. and Machemer, H., Physical and Physiological Components of the Graviresponses of Wild-Type and Mutant Paramecium tetraurelia, J. Exp. Biol., 2000, vol. 203., pp. 1059–1070.

    PubMed  CAS  Google Scholar 

  43. Hemmersbach-Krause, R., Briegleb, W., Vogel, K., and Hander, D.-P., Swimming Velocity of Paramecium under the Conditions of Weightlessness, Acta Protozool., 1993, vol. 32, pp. 229–236.

    PubMed  CAS  Google Scholar 

  44. Seravin, L.N., Dvigatel’nye sistemy prosteishikh (Motor Systems of Protozoa), Leningrad, 1967.

  45. Faller, D.M. and Shields, D., Molekulyarnaya biologiya kletki (Molecular Cell Biology), Moscow, 2004.

  46. Naitoh, Y. and Machemer, H., Role of Cell Membrane and Cytoskeletal Organization in Cell Motility, Zool. Science, 1990. vol. 7, pp. 103–109.

    Google Scholar 

  47. Grain, J., The Cytoskeleton in Protists: Nature, Structure and Function, Int. Rev. Cytol., 1986, vol. 104, pp. 153–249.

    Article  PubMed  CAS  Google Scholar 

  48. Adoutte, A. and Fleury, A., Cytoskeleton of Ciliates, Ciliates: Cells as Organisms, Stuttgart, Jena, New York, 1996, pp. 41–72.

    Google Scholar 

  49. Kohl, L. and Gull, K., Molecular Architecture of the Trypanosome Cytoseleton, Mol. Biochem. Parasitol., 1998, vol. 93, pp. 1–9.

    Article  PubMed  CAS  Google Scholar 

  50. Baev, K.V., Neironal’nye mekhanizmy programmirovaniya spinnym mozgom ritmicheskikh dvizhenii (Neuronal Mechanisms of Programming of Rhythmic Movements by Spinal Cord), Kiev, 1984.

  51. Parazitarnye bolezni cheloveka (protozoonozy i gelmintozy) (Parasitic Human Diseases (Protozoonoses and Helminthoses)), Sergeev, V.P., Lobzin, Yu.V., and Kozlov, S.S., Eds., St. Petersburg, 2006.

  52. Vinogradov-Volzhinskii, D.V., Meditsinskaya parazitologiya (Medical Parazitology), Leningrad, 1977.

  53. Bradbury, P.C., Pathogenic Ciliates, Ciliates: Cells as Organisms, New York, 1996, pp. 463–477.

  54. Lee, L., Studies of a New Ciliate, Balantidium polyvacuolum sp., from the Intestine of Fishes, Acta, Hydrobiol. Sinica., 1963, vol. 1, pp. 81–97.

    Google Scholar 

  55. Tempelis, C.H. and Lysenko, M.G., The Production of Hyaluronidase by Balantidium coli, Exper. Parasitol., 1957, vol. 6, pp. 31–36.

    Article  CAS  Google Scholar 

  56. Mashkovskii, M.D., Lekarstvennye sredstva (Medicinal Drugs), vol. 2, Moscow, 2002.

  57. Spravochnik VIDAL “Lekarstvennye preparaty v Rossii” (Reference Book VIDAL “Medicinal Preparations in Russia”), Moscow, 2007.

  58. Svidersky, V.L., Lobzin, Yu.V., and Gorelkin, V.S., New Approaches to Therapy of Human Protozoan Invasions, Tez. konf. “Fundamental’nye nauki—meditsine” (Abstr Conf. “Fundamental Sciences—To Medicine”), Moscow, 2006, pp. 129–130.

  59. Kul’skii, L.A., Serebryanaya voda (Silver Water), Kiev, 1982.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V. L. Svidersky, Yu. V. Lobzin, V. S. Gorelkin, S. I. Plotnikova, 2007, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2007, Vol. 43, No. 5, pp. 379–390.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svidersky, V.L., Lobzin, Y.V., Gorelkin, V.S. et al. Motor activity of infusoria: Theoretical and applied aspects. J Evol Biochem Phys 43, 453–466 (2007). https://doi.org/10.1134/S0022093007050015

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093007050015

Key words

Navigation