Skip to main content
Log in

Effects of synthetic defensin fragments on aggregation and adhesion of epitheliolike cells

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Normal course of processes of regeneration and epithelization of damaged tissues has been shown to be based on the capability of cells participating in these processes for selective adhesion. In the case of the complete or partial absence of this capability in the cells-participants of the wound healing process, the so-called non-healing wounds appear. In this connection, it remains actual to search for natural agents promoting healing of chronic non-healing wounds. In the present work, we studied effects of synthetic fragments of leukocytic antimicrobial peptides defensines—GER, FGER, and GERA—on aggregation and adhesion of epitheliolike cells of the CHO-K1 line. These peptides have been established to have aggregate-stimulating properties; besides, they enhance adhesion of the cells to the untreated plastic and inhibit fibronectinmediated cell adhesion. Possible pathways of regulation by peptides of processes of intercellular and cell-matrix interaction are discussed as well as ways of release of these compounds in an organism and their functional role in an organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fenchin, K.M., Zazhivlenie ran (Wound Healing), Kiev, 1979.

  2. Kokryakov, B.N., Biologiya antibiotikov zhivotnogo proiskhozhdeniya (Biology of Antibiotics of the Animal Origin), St. Petersburg, 1999.

  3. Sorensen, O.E., Cowland, J.B., Theilgaard-Monch, K., Liu, L., Gans, T., and Borregaard, N., Wound Healing and Expression of Antimicrobial Peptides/Polypeptides in Human Keratinocytes, a Consequence of Common Growth Factor, J. Immunol., 2003, vol. 170, pp. 5583–5589.

    PubMed  CAS  Google Scholar 

  4. Kirsner, R.S. and Eaglstein, W.H., The Wound Healing Process, Dermatol. Clin., 1993, pp. 629–640.

  5. Ivanova, V.P., Sorochinskaya, E.I., Lozhkina, T.K., and Anokhina, V.V., Immunomodulating and Analgesic Activity of Synthetic Fragments of Various Proteins and Immunopeptides, Ukr. Biokhim. Zh., 1988, vol. 60, pp. 3–9.

    PubMed  CAS  Google Scholar 

  6. Bromberg, J.S., The Biology of CD2: Adhesion, Transmembrane Signal and Regulatory Receptor of Immunity, J. Surg. Res., 1993, vol. 54, pp. 258–267.

    Article  PubMed  CAS  Google Scholar 

  7. Bierer, B.E. and Hahn, W.C., T Cell Adhesion, Avidity Regulation and Signaling: a Molecular Analysis of CD2, Semin. Immunol., 1993, vol. 5, pp. 249–261.

    Article  PubMed  CAS  Google Scholar 

  8. Takai, Y., Reed, M.L., Burakoff, S.J., and Hermann, S.H., Direct Evidence for a Receptor-Ligand Interaction between the T Cell Surface Antigen CD2 and Lymphocyte-Function-Associated Antigen 3, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 6864–6868.

    Article  PubMed  CAS  Google Scholar 

  9. Rechy, M.A., Neidhardt, E.A., Sayre, P.H., Ciardelli, T.L., and Reinherz, E.L., Structural and Functional Characterization of the CD2 Immunoadhesion Domain. Evidence for Inclusion of CD2 in an Alpha-Beta Protein Folding Class, J. Biol. Chem., 1990, vol. 265, pp. 8542–8549.

    Google Scholar 

  10. Rabin, E.M., Gordon, K., Knoppers, M.N., Luther, M.A., Neidhardt, E.A., Flynn, J.F., Sardonini, C.A., Sampo, T.M., Cancino, M.F., and Recny, M.A., Inhibition of T Cell Activation and Adhesion Functions by Soluble CD2 Protein, Cell Immunol., 1993, vol. 149, pp. 24–38.

    Article  PubMed  CAS  Google Scholar 

  11. Yukuva, N., Ivone, T., and Tadashi, E.A., A Novel Neutrophil Adherence Test Effectively Reflects the Activated State of Neutrophils, Microbiol. Immunol., 1989. vol. 33, pp. 834–852.

    Google Scholar 

  12. Paltsev, M.A., Ivanov, A.A., and Severin, S.E., Mezhkletochnye vzaimodeistviya (Intercellular Interactions), Moscow, 2003.

  13. Komberger, D.J., Fibronectin, Int. J. Bjochem. Cell. Biol., 1997, vol. 29, pp. 939–943.

    Article  Google Scholar 

  14. Humphries, M.J., Integrin Structure, Biochem. Soc. Trans., 2000, vol. 28, pp. 311–339.

    Article  PubMed  CAS  Google Scholar 

  15. van der Flier, A. and Sonnenberg, A., Function and Interactions of Integrins, Cell Tissue Res., 2001, vol. 305, pp. 285–298.

    Article  PubMed  Google Scholar 

  16. Johansson, S., Svineng, G., Wennerberg, K., Armutik, A., and Lohikangas, L., Fibronectin-Integrin Interactions, Front. Biosci., 1997, vol. 2, pp. 126–146.

    Google Scholar 

  17. Miyamoto, S., Teramoto, H., Coso, O.A., Gutkind, J.S., Burbelo, P.D., Akiyama, S.K., and Yamada, K.M., Integrin Function: Molecular Hierarchies of Cytosceletal and Signaling Molecules, J. Cell Biol., 1995, vol. 131, pp. 791–805.

    Article  PubMed  CAS  Google Scholar 

  18. Loo, D.T., Kanner, S.B., and Aruffo, A., Filamin Binds to the Cytoplasmic Domain of the Beta 1-Integrin. Identification of Amino Acids Responsible for this Interaction, J. Biol. Chem., 1998, vol. 273, pp. 23 304–23 312.

    CAS  Google Scholar 

  19. Otey, C.A., Vasquer, G.B., Burridge, K., and Erickson, B.W., Mapping of the α-Actinin Binding Site within the β1-Integrin Cytoplasmic Domain, J. Biol. Chem., 1993, vol. 268, pp. 21 193–21 197.

    CAS  Google Scholar 

  20. Reddy, K.B., Gascard, P., Price, M.G., Negrescu, E.V., and Fox, J.E.B., Identification of an Interaction between the M-Band Protein Skelemin and β-Integrin Subunits. Colocalisation of a Skelemin-Like Protein with β1-and β3-Integrins in Nonmuscle Cells, J. Biol. Chem., 1998, vol. 273, pp. 35 039–35 047.

    CAS  Google Scholar 

  21. Chen, L.M., Bailey, D., and Fernandez-Valle, C., Association of β1 Integrin with Focal Adhesion Kinase and Paxillin in Defferentiating Schwann Cells, J. Neurosci., 2000, vol. 20, pp. 3776–3784.

    PubMed  CAS  Google Scholar 

  22. Knight, C.G., Morton, L.F., Onley, D.J., Peachey, A.R., Messent, A.J., Smethurst, P.A., Tuckwell, D.S., Farndale, R.W., and Barnes, M.J., Identification in Collagen Type I of an Integrin α2β1-Binding Site Containing an Essential GER Sequence, J. Biol. Chem., 1998, vol. 273, pp. 33 287–33 294.

    CAS  Google Scholar 

  23. Xu, Y., Gurusiddappa, S., Rich, R.L., Owens, R.T., Keene, D.R., Mayne, R., Hook, A., and Hook, M., Multiple Binding Sites in Collagen Type I for the Integrins α1β1 and α2β1, J. Biol. Chem., 2000, vol. 275, pp. 38 981–38 989.

    CAS  Google Scholar 

  24. Gullberg, D.E. and Lundgren-Akerlund, E., Collagen-Binding I Domain Integrins—What Do They Do?, Prog. Histochem. Cytochem., 2002, vol. 37, pp. 3–54.

    Article  PubMed  CAS  Google Scholar 

  25. Soo, C., Shaw, W.W., Zhang, X., Longaker, M.T., Howard, E.W., and Ting, K., Differential Expression of Matrix Metalloproteases and Their Tissue-Derived Inhibitors in Cutaneous Wound Repair, Plast. Reconstr. Surg., 2000, vol. 105, pp. 638–647.

    Article  PubMed  CAS  Google Scholar 

  26. Kharchenko, E.P., Ivanova, V.P., Sokolova, T.V., and Levchenko, V.F., The Block Principle of Organization and Polyfunctionality of Regulatory Peptides, Biokhimiya, 1987, vol. 52, pp. 279–289.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V. P. Ivanova, Z. V. Kovaleva, E. I. Sorochinskaya, V. V. Anokhina, and A.I. Krivchenko, 2007, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2007, Vol. 43, No. 4, pp. 337–345.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, V.P., Kovaleva, Z.V., Sorochinskaya, E.I. et al. Effects of synthetic defensin fragments on aggregation and adhesion of epitheliolike cells. J Evol Biochem Phys 43, 404–414 (2007). https://doi.org/10.1134/S0022093007030059

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093007030059

Key words

Navigation