Skip to main content
Log in

FINITE ELEMENT–BOUNDARY ELEMENT BASED VIBROACOUSTIC MODEL FOR NONHOMOGENEOUS TURBULENT BOUNDARY LAYER EXCITED COMPOSITE PANELS INVOLVING THE CHOLESKY DECOMPOSITION

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

An original numerical framework is developed in the present research work in order to estimate the free field sound radiation from baffled structural panels subjected to nonhomogeneous turbulent boundary layer flow-induced excitation. A sequence of semi-analytical methods is used to estimate the nonhomogeneous turbulent boundary layer wall pressure spectrum, which is decomposed using the Cholesky technique to obtain the random wall pressure in the frequency domain. Structural panels are modeled using the finite element technique, and a coupled finite element-boundary element modeling technique is developed to estimate the sound power level radiated into the free field. Results are obtained for laminated composite structural panels with various fiber orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. D. E. Bishop, “Cruise Flight Noise Levels in a Turbojet Transport Airplane," Noise Control 7, 37–42 (1961). DOI: 10.1121/1.2369437.

    Article  Google Scholar 

  2. S. A. Rizzi, R. G. Rackl, and E. V. Andrianov, “Flight Test Measurements from the Tu-144LL Structure/Cabin Noise Experiment," Rep. / NASA. N TM-209858. Hampton, 2000.

  3. W. V. Bhat, “Flight Test Measurement of Exterior Turbulent Boundary Layer Pressure Fluctuations on Boeing Model 737 Airplane," J. Sound Vibrat. 14, 439–457 (1971). DOI: 10.1016/0022-460X(71)90574-8.

    Article  ADS  Google Scholar 

  4. J. F. Wilby and F. L. Gloyna, “Vibration Measurements of an Airplane Fuselage Structure. 2. Jet Noise Excitation," J. Sound Vibrat. 23, 467–486 (1972). DOI: 10.1016/0022-460X(72)90504-4.

    Article  ADS  Google Scholar 

  5. R. H. Kraichnan, “Pressure Fluctuations in Turbulent Flow over a Flat Plate," J. Acoust. Soc. Amer. 28, 378–390 (1956). DOI: 10.1121/1.1908336.

    Article  ADS  MathSciNet  Google Scholar 

  6. M. V. Lowson, “Prediction of Boundary Layer Pressure Fluctuation," Rep. / U.S. Air Force Dynamics Lab. N TR-67-167. S. l., 1968.

  7. G. M. Lilley and T. H. Hodgson, “On Surface Pressure Fluctuations in Turbulent Boundary Layers," Rep. / Advisory Group for Aeronaut. Res. and Development. No. 276. S. l., 1960.

  8. G. M. Corcos, “Resolution of Pressure in Turbulence," J. Acoust. Soc. Amer. 35, 192–199 (1963). DOI: 10.1121/1.1918431.

    Article  ADS  Google Scholar 

  9. G. M. Corcos, “The Resolution of Turbulent Pressure at the Wall of a Boundary Layer," J. Sound Vibrat. 6, 59–70 (1967). DOI: 10.1016/0022-460X(67)90158-7.

    Article  ADS  Google Scholar 

  10. M. K. Bull, “Wall-Pressure Fluctuations Associated with Subsonic Turbulent Boundary Layer Flow," J. Fluid Mech. 28, 719–754 (1967). DOI: 10.1017/S0022112067002411.

    Article  ADS  Google Scholar 

  11. W. K. Blake, “Turbulent Boundary-Layer Wall-Pressure Fluctuations on Smooth and Rough Walls," J. Fluid Mech. 44, 637–660 (1970). DOI: 10.1017/S0022112070002069.

    Article  ADS  Google Scholar 

  12. G. Schewe, “On the Structure and Resolution of Wall-Pressure Fluctuations Associated with Turbulent Boundary Layer Flow," J. Fluid Mech. 134, 311–328 (1983). DOI: 10.1017/S0022112083003389.

    Article  ADS  Google Scholar 

  13. T. M. Farabee and M. J. Casarella, “Spectral Features of Wall Pressure Fluctuations Beneath Turbulent Boundary Layers," Phys. Fluids. A. Fluid Dynamics 3, 2410–2420 (1991). DOI: 10.1063/1.858179.

    Article  ADS  CAS  Google Scholar 

  14. B. M. Efimtsov, “Characteristics of the Field of Turbulent Wall Pressure Fluctuations at Large Reynolds Numbers," Soviet Phys. Acoust. 28, 289–292 (1982).

    Google Scholar 

  15. M. Goody, “Empirical Spectral Model of Surface Pressure Fluctuations," AIAA J. 42, 1788–1794 (2004). DOI: 10.2514/1.9433.

    Article  ADS  Google Scholar 

  16. A. V. Smol’yakov and V. M. Tkachenko, “Model of a Field of Pseudosonic Turbulent Wall Pressures and Experimental Data," Soviet Phys. Acoust. 37, 627–631 (1991).

    Google Scholar 

  17. S. A. Hambric, Y. F. Hwang, and W. K. Bonness, “Vibration of Plates with Clamped and Free Edges Excited by Low-Speed Turbulent Boundary Layer Flow," J. Fluids Structures 19, 93–110 (2004). DOI: 10.1016/j.jfluidstructs.2003.09.002.

    Article  ADS  Google Scholar 

  18. J. Rocha, A. Suleman, and F. Lau, “Prediction of Flow-Induced Noise in Transport Vehicles: Development and Validation of a Coupled Structural-Acoustic Analytical Framework," Canad. Acoust. 37 (4), 13–29 (2009).

    Google Scholar 

  19. J. Rocha, A. Suleman, and F. Lau, “Turbulent Boundary Layer Induced Noise and Vibration of a Multi-Panel Walled Acoustic Enclosure," Canad. Acoust. 38 (4), 9–22 (2010).

    Google Scholar 

  20. J. Rocha, A. Suleman, and F. Lau, “Prediction of Turbulent Boundary Layer Induced Noise in the Cabin of a BWB Aircraft," Shock Vibrat. 19 (4), 693–705 (2012). DOI: 10.3233/SAV-2011-0660.

    Article  Google Scholar 

  21. J. Rocha and D. Palumbo, “On the Sensitivity of Sound Power Radiated by Aircraft Panels to Turbulent Boundary Layer Parameters," J. Sound Vibrat. 331 (21), 4785–4806 (2012). DOI: 10.1016/j.jsv.2012.05.030.

    Article  ADS  Google Scholar 

  22. J. Rocha, “Sound Radiation and Vibration of Composite Panels Excited by Turbulent Flow: Analytical Prediction and Analysis," Shock Vibrat. 2014, 316481 (2014). DOI: 10.1155/2014/316481.

    Article  Google Scholar 

  23. A. Caiazzo, N. Alujević, B. Pluymers, and W. Desmet, “Active Control of Turbulent Boundary Layer-Induced Sound Transmission Through the Cavity-Backed Double Panels," J. Sound Vibrat. 422, 161–188 (2018). DOI: 10.1016/j.jsv.2018.02.027.

    Article  ADS  Google Scholar 

  24. C. Gullion, L. Maxit, and E. Redon, “Modelling Vibrating Panels Excited by a Non-Homogeneous Turbulent Boundary Layer," J. Fluids Structures 106, 103378 (2021). DOI: 10.1016/j.jfluidstructs.2021.103378.

    Article  ADS  Google Scholar 

  25. N. Mahmoudnejad and K. A. Hoffmann, “Numerical Simulation of Wall Pressure Fluctuations due to Turbulent Boundary Layer," J. Aircraft. 49, 2046–2058 (2012). DOI: 10.2514/1.C031858.

    Article  Google Scholar 

  26. E. Reissner, “The Effect of Transverse Shear Deformation on the Bending of Elastic Plates," ASME J. Appl. Mech. 12, A69–A77 (1945). DOI: 10.1115/1.4009435.

    Article  ADS  MathSciNet  Google Scholar 

  27. R. D. Mindlin, “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates," ASME J. Appl. Mech. 18, 31–38 (1951). DOI: 10.1115/1.4010217.

    Article  ADS  Google Scholar 

  28. F. Fahy, “Sound and Structural Vibration: Radiation, Ttransmission and Response," 2nd ed. Eds. by F. Fahy, P. Gardonio. (Amsterdam: Acad. Press: Elsevier, 2007).

    Book  Google Scholar 

  29. J. S. Bendat, “Random Data: Analysis and Measurement Procedures," 2nd ed. Eds. by J. S. Bendat, A. G. Piersol (N. Y.: Wiley, 1986).

    Book  Google Scholar 

  30. Y. K. Lin, Probabilistic Theory of Structural Dynamics (N. Y.: McGraw-Hill, 1967).

    Google Scholar 

  31. C. E. Wallace, “Radiation Resistance of a Rectangular Panel," J. Acoust. Soc. Amer. 51, 946–952 (1972). DOI: 10.1121/1.1912943.

    Article  ADS  Google Scholar 

  32. L. E. Wittig and A. K. Sinha, “Simulation of Multicorrelated Random Processes using the FFT Algorithm," J. Acoust. Soc. Amer. 58, 630–634 (1975). DOI: 10.1121/1.380702.

    Article  ADS  Google Scholar 

  33. I. B. Celik, U. Ghia, P. J. Roache, et al., “Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications," Trans. ASME. J. Fluids Engng. 130, 078001 (2008). DOI: 10.1115/1.2960953.

    Article  Google Scholar 

  34. F. Han, R. J. Bernhard, and L. G. Mongeau, “Prediction of Flow-Induced Structural Vibration and Sound Radiation using Energy Flow Analysis," J. Sound Vibrat. 227, 685–709 (1999). DOI: 10.1006/jsvi.1998.3013.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Adhikary.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 6, pp. 210-225. https://doi.org/10.15372/PMTF20230624.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikary, B.R., Sahu, A. & Bhattacharya, P. FINITE ELEMENT–BOUNDARY ELEMENT BASED VIBROACOUSTIC MODEL FOR NONHOMOGENEOUS TURBULENT BOUNDARY LAYER EXCITED COMPOSITE PANELS INVOLVING THE CHOLESKY DECOMPOSITION. J Appl Mech Tech Phy 64, 1128–1140 (2023). https://doi.org/10.1134/S002189442306024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189442306024X

Keywords

Navigation