Skip to main content
Log in

USING A LEADER SAMPLE TO PREDICT THE CREEP AND LONG-TERM STRENGTH OF A MATERIAL DURING DUCTILE FRACTURE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A method is developed for predicting creep and long-term strength based on the behavior of a previously tested sample (leader sample, prototype) in the case of ductile fracture. It is assumed that a loaded material does not undergo instantaneous plastic deformation and the first stage of creep. The incompressibility hypothesis is fulfilled in this case. It is shown that, if a constant-stress creep curve and the time to fracture are known for a leader sample, then obtaining a diagram of rheological deformation and long-term strength of the material at other stress values requires knowing only the initial (at the initial time) minimum creep strain rate of the samples for these stress values. The relevance of the developed method is checked with experimental data in two types of tests. The first type is tension tests of 12Kh18N10T corrosion-resistant steel samples at a temperature of 850°C and titanium alloy samples at a temperature of 600°C and the second type is tension and torsion tests of D16T alloy samples at a temperature of 250°C. It is shown that the prediction results are independent of the choice of a leader sample from many samples tested at different stresses. The possibility of using the developed method in experimental studies of creep of materials until their fracture is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. V. Loktionov, I. Lyubashevskaya, and E. Terentyev, “The Regularities of Creep Deformation and Failure of the VVER’s Pressure Vessel Steel 15Kh2NMFA-A in Air and Argon at Temperature Range 500–900°C," Nuclear Materials Energy 28, 101019 (2021). DOI: 10.1016/j.nme.2021.101019.

    Article  CAS  Google Scholar 

  2. V. Loktionov, I. Lyubashevskaya, O. Sosnin, and E. Terentyev, “Short-Term Strength Properties and Features of High-Temperature Deformation of VVER Reactor Pressure Vessel Steel 15Kh2NMFA-A Within the Temperature Range 20–1200°C," Nuclear Materials Energy 352, 110118 (2019). DOI: 10.1016/j.nucengdes.2019.110188.

    Article  CAS  Google Scholar 

  3. I. A. Banshchikova and A. F. Nikitenko, “Creep of Axisymmetrically Loaded Plates With Allowance for Damage Accumulation in Their Material," Prikl. Mekh. Tekh. Fiz. 47 (5), 156–168 (2006) [Adv. Appl. Mech. 47 (5), 747–756 (2006). DOI: 10.1007/s10808-006-0111-3].

    Article  ADS  Google Scholar 

  4. A. F. Nikitenko and I. V. Lyubashevskaya, “Service Life of Pressurized Vessels," Prikl. Mekh. Tekh. Fiz. 48 (5), 173–182 (2007) [Adv. Appl. Mech. 48 (5), 766–773 (2007). DOI: 10.1007/s10808-007-0099-3].

    Article  ADS  Google Scholar 

  5. A. M. Lokoshchenko, Creep and Long-Term Strength of Metals (Fizmatlit, Moscow, 2016) [in Russian].

    Google Scholar 

  6. A. M. Lokoshchenko, “Results of Studying Creep and Long-Term Strength of Metals at the Institute of Mechanics at the Lomonosov Moscow State University (To Yu. N. Rabotnov’s Anniversary)," Prikl. Mekh. Tekh. Fiz. 55 (1), 144–165 (2014) [Adv. Appl. Mech. 55 (1), 118–135 (2014). DOI: 10.1134/S0021894414010155].

    Article  ADS  MathSciNet  Google Scholar 

  7. A. M. Lokoshchenko, “Application of Kinetic Theory to the Analysis of High-Temperature Creep Rupture of Metals Under Complex Stress (Review)," Prikl. Mekh. Tekh. Fiz. 53 (4), 149–164 (2012) [Adv. Appl. Mech. 53 (4), 599–610 (2012). DOI: 10.1134/S0021894412040141].

    Article  ADS  Google Scholar 

  8. A. M. Lokoshchenko, L. V. Fomin, W. V. Teraud, et al., “Creep and Long-Term Strength of Metals under Unsteady Complex Stress States (Review)," Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 24 (2), 275–318 (2020). DOI: 10.14498/vsgtu1765.

    Article  Google Scholar 

  9. I. A. Volkov and Yu. G. Korotkikh, Equations of State of Damaged Viscoelastic Media (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  10. A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials (Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  11. V. P. Radchenko and Yu. A. Eremin, Rheological Deformation and Destruction of Materials and Structural Elements (Mashinostroenie-1, Moscow, 2004) [in Russian].

    Google Scholar 

  12. Yu. N. Rabotnov, Creep Problems in Structural Members (North-Holland Publishing Company, 1969).

    Google Scholar 

  13. V. P. Radchenko and E. A. Afanaseva, “Prediction of Individual Deformation Characteristics of Structural Elements by a “Leader" Product," Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 26 (3), 500–519 (2022). DOI: 10.14498/vsgtu1919].

    Article  Google Scholar 

  14. C. D. Lundin, A. H. Aronson, L. A. Jackman, and W. R. Clough, “Very-Short-Time, Very-High-Temperature Creep Rupture of Type 347 Stainless Steel and Correlation of Data," J. Basic Engng. 91 (1), 32–38 (1969). DOI: 10.1115/1.3571023.

    Article  Google Scholar 

  15. N. J. Hoff, “The Necking and the Rupture of Rods Subjected to Constant Tensile Loads," J. Appl. Mech. 20, 105–108 (1953). DOI: 10.1115/1.4010601.

    Article  ADS  Google Scholar 

  16. T. N. Mozharovskaya, “Relationship of the Time Until Failure in Long-Term Loading Under Conditions of the Plane Stressed State to the Minimum Rate of Creep Deformations," Problemy Prochnosti, No. 12, 51–54 (1982) [Strength Mater. 14, 1635–1639 (1982). DOI: 10.1007/BF00768650].

    Article  Google Scholar 

  17. T. N. Mozharovskaya, V. N. Mozharovskii, and N. I. Shtefan, “Dependence Between the Time to Fracture and the Steady-State Creep Strain Rate of Structural Materials," Visnik NTUU KPI. Ser. Mashobuduvannya, No. 59, 37–40 (2010).

  18. T. N. Mozharovskaya, V. N. Mozharovskii, and N. I. Shtefan, “Relationship Between the Main Characteristics of Creep and Durability of Structural Materials," Visnik NTUU KPI. Ser. Mashinobuduvannya, No. 63, 185–187 (2011).

  19. E. L. Robinson, “Effect of Temperature Variation on the Long-Time Rupture Strength of Steels," Trans. ASME 74 (5), 777–780 (1952). DOI: 10.1115/1.4015916.

    Article  Google Scholar 

  20. G. F. Lepin, Creep of Metals and Heat Resistance Criteria (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  21. A. M. Lokoshchenko and S. A. Shesterikov, “Method for Description of Creep and Long-Term Strength With Pure Elongation," Prikl. Mekh. Tekh. Fiz. 21 (3), 155–159 (1980) [Adv. Appl. Mech. 21 (3), 414–417 (1980). DOI: 10.1007/BF00920784].

    Article  ADS  Google Scholar 

  22. A. M. Lokoshchenko and S. A. Shesterikov, “Creep Strength Model With Nonmonotonic Dependence of the Strain During Rupture on the Stress," Prikl. Mekh. Tekh. Fiz. 23 (1), 160–163 (1982) [Adv. Appl. Mech. 23 (1), 151–153 (1982). DOI: 10.1007/BF00911995].

    Article  ADS  Google Scholar 

  23. Creep and Long-Term Strength, Ed. by S. A. Shesterikov (Mashinostroenie, Moscow, 1983) [in Russian].

    Google Scholar 

  24. C. M. Omprakash, A. Kumar, B. Srivathsa, and D. V. V. Satyanarayana, “Prediction of Creep Curves of High Temperature Alloys Using \(\theta\)-Projection Concept," Procedia Engng., No. 55, 756–759 (2013). DOI: 10.1016/j.proeng.2013.03.327.

    Article  CAS  Google Scholar 

  25. O. V. Sosnin, B. V. Gorev, and A. F. Nikitenko, Energy Version of the Creep Theory (Lavrentyev Institute of Hydrodynamics, Novosibirsk, 1986) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Radchenko.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 6, pp. 199-209. https://doi.org/10.15372/PMTF20230623.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radchenko, V.P., Afanaseva, E.A. & Saushkin, M.N. USING A LEADER SAMPLE TO PREDICT THE CREEP AND LONG-TERM STRENGTH OF A MATERIAL DURING DUCTILE FRACTURE. J Appl Mech Tech Phy 64, 1119–1127 (2023). https://doi.org/10.1134/S0021894423060238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423060238

Keywords

Navigation