Skip to main content
Log in

EXPERIMENTAL METHOD FOR STUDYING THE INTERACTION PROCESSES OF HIGH-VELOCITY IMPACTORS WITH MULTILAYER TRANSPARENT ARMOR

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

An experimental method is developed that makes it possible to visualize the onset and spreading of damage in each layer of transparent armor. The damage development dynamics in multilayer packages consisting of four \(480\times 480\)-mm layers and eight \(300\times 300\)-mm layers is analyzed. The evolution of damage is obtained under the influence of a 12.7-mm bullet with a two-component core with a total mass of 59.2 g and a 7.62-mm bullet with a two-component core with a total mass of 10.9 g along the normal and at an acute angle in a range of impact velocities of 777–797 m/s. The experimental data are compared with the numerical simulation of interaction between an impactor and a multilayer transparent target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. I. F. Kobylkin and V. V. Selivanov, Materials and Structures of Light Armor Protection (Izd. Mosk. Gos. Tekh. Univ. Im. N. E. Baumana, Moscow, 2014) [in Russian].

    Google Scholar 

  2. N. N. Belov, N. T. Yugov, A. Yu. Sammel, and E. Yu. Stepanov, “Study of the Transparent Armor Strength Under a High-Speed Impact of a Cylindrical Impactor by Computer Modeling Method," Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, No. 67, 69–77 (2020). DOI: 10.17223/19988621/67/7.

  3. X. Li, J. Luo, and Y. Zhou, “Spark Plasma Sintering Behavior of AlON Ceramics Doped with Different Concentrations of Y2O3," J. Europ. Ceramic Soc. 35 (7), 2027–2032 (2015).

    Article  CAS  Google Scholar 

  4. A. S. Vlasov, E. L. Zil’berbrand, and A. A. Kozhushko, “Principles of Transparent Protection Against High-Velocity Impact," in Extreme States of Matter. Detonation. Shock Waves: Proceedings of the International Conference “7th Kharitonov Thematic Scientific Readings", Sarov (Russia), 14–18 March 2005 (All-Russian Scientific Research Institute of Experimental Physics Sarov, 2005) [in Russian].

  5. The Science of Armour Materials, Ed. by I. G. Crouch (Woodhead Publ., S. l., 2017).

    Google Scholar 

  6. G. F. Freeguard and D. Marshall, “Bullet-Resistant Glass: A Review of Product and Process Technology," Composites 11 (1), 25–32 (1980).

    Article  CAS  Google Scholar 

  7. K. Machalická and M. Eliášová, “Adhesive Joints in Glass Structures: Effects of Various Materials in the Connection, Thickness of the Adhesive Layer, and Ageing," Intern. J. Adhesion Adhesives 72, 10–22 (2017). DOI: 10.1016/j.ijadhadh.2016.09.007.

    Article  CAS  Google Scholar 

  8. P. J. Patel, G. A. Gilde, P. G. Dehmer, and J. W. McCauley, “Transparent Armor," AMPTIAC Newslett. 4 (3), 1–2 (2000).

    Google Scholar 

  9. E. Strassburger, S. Bauer, and G. Popko, “Damage Visualization and Deformation Measurement in Glass Laminates During Projectile Penetration," Defence Technol. 10 (2), 226–238 (2014).

    Article  Google Scholar 

  10. V. A. Fedorenko, Current Problems in Forensic Ballistics (Izdatel’stvo Yurlitinform, Moscow, 2011) [in Russian].

    Google Scholar 

  11. I. F. Kobylkin and A. A. Gorbatenko, “Penetration of Double-Layer Targets With an Outer Ceramic Layer Under the Action of an Impactor at an Angle," Fiz. Goreniya Vzryva 54 (6), 112–120 (2018) [Combust., Expl., Shock Waves 54 (6), 728–736 (2018). DOI: 10.1134/S0010508218060138].

    Article  Google Scholar 

  12. I. F. Kobylkin and V. V. Shakirzyanova, “Numerical Simulation of Penetration of Multilayer Transparent Armor," Vestnik Moskovskogo Gosudarstvennogo Tekhnicheskogo Universiteta Imeni N. E. Baumana. Seirya. Mashinostroenie, No. 1, 16–28 (2020). DOI: 10.18698/0236-3941-2020-1-16-28.

  13. LS-DYNA Theory Manual (Livermore Software Technol. Corp., Livermore, 2019). URL: https://ftp.lstc.com/anonymous/outgoing/jday/manuals/DRAFT_Theory.pdf.

  14. G. R. Liu and M. B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method (World Scientif., New Jersey etc., 2003).

    Book  Google Scholar 

  15. A. V. Petyukov and K. A. Grin, “Special Features of Mathematical Simulation of Fracture of Ceramic Plates Under the influence of High-Velocity Impactors," Inzhenernyi Zhurnal: Nauka i Innovatsii 12, 1–12 (2021). DOI: 10.18698/2308-6033-2021-12-2133.

    Article  Google Scholar 

  16. T. J. Holmquist, G. R. Johnson, D. E. Grady, et al., “High Strain Rate Properties and Constitutive Modeling of Glass," in Proc. of the 15th Intern. Symp. on Ballistics, Jerusalem (Israel), 21–24 May 1995 (S. l., 1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Fedyai.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 6, pp. 187-198. https://doi.org/10.15372/PMTF20230622.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedyai, V.V., Selivanov, V.V. & Petyukov, A.V. EXPERIMENTAL METHOD FOR STUDYING THE INTERACTION PROCESSES OF HIGH-VELOCITY IMPACTORS WITH MULTILAYER TRANSPARENT ARMOR. J Appl Mech Tech Phy 64, 1108–1118 (2023). https://doi.org/10.1134/S0021894423060226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423060226

Keywords

Navigation