Skip to main content
Log in

EFFECT OF A LINEAR PARAMETER ON THE BRITTLE FRACTURE OF AN ELASTIC LAYER WITH A CIRCULAR HOLE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The effect of a hole radius in an elastic layer on a critical external load at the moment of the onset of fracture, determined by the energy criterion, is investigated. A free energy flow through an interaction arc is used as a fracture criterion to describe the dependence of a critical external load on a hole radius. The length of the interaction arc constructed in the vicinity of a free energy peak point is determined using a linear parameter. The introduced linear parameter for a polymethyl methacrylate layer is obtained using known experimental data. The maximum value of the linear parameter can be taken as a material constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. C. E. Inglis, “Stresses in a Plate Due to the Presence of Cracks and Sharp Corners," Trans. Roy. Inst. Nav. Archit. London 55, 219–230 (1913).

    Google Scholar 

  2. M. L. Williams, “On the Stress Distribution at the Base of a Stationary Crack," J. Appl. Mech. 24, 109–114 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. A. Griffith, “The Theory of Rupture," in Proc. of the 1st Int. Congr. for Appl. Mech. (Tech. Boekhandel en Drukerij Waltman J. (Jr.), Delft, 1924), pp. 55–63.

  4. A. A. Griffith, “The Phenomena of Rupture and Flow in Solids," Philos. Trans. Roy. Soc. London, Ser. A 221, 163–198 (1920).

    ADS  Google Scholar 

  5. G. R. Irwin and J. A. Kies, “Critical Energy Rate Analysis of Fracture Strength," Welding J. Res. Suppl. 33, 193–198 (1954).

    Google Scholar 

  6. G. R. Irvin, “Linear Fracture Mechanics, Fracture Transition, and Fracture Control," Eng. Fract. Mech. 1, 241–257 (1968).

    Article  Google Scholar 

  7. V. A. Levin, V. M. Morozov, and Yu. G. Matvienko, Selected Nonlinear Problems of Fracture Mechanics (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  8. S. V. Suknev, “Nonlocal and Gradient Fracture Criteria for Quasi-Brittle Materials under Compression," Fiz. Mezomekh. 21 (4), 22–32 (2018) [Phys. Mesomech. 22, 504–513 (2019); DOI: https://doi.org/10.1134/S1029959919060079].

    Article  Google Scholar 

  9. S. V. Suknev, “Fracture of Brittle Geomaterial with a Circular Hole under Biaxial Loading," Prikl. Mekh. Tekh. Fiz. 56 (6), 166–172 (2015) [J. Appl. Mech. Tech. Phys. 56 (6), 1078–1083 (2015); DOI: https://doi.org/10.1134/S0021894415060188].

    Article  ADS  Google Scholar 

  10. S. V. Suknev, “Application of the Finite Fracture Mechanics Approach to Assess the Failure of a Quasi-Brittle Material with a Circular Hole," Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 3, 13–25 (2021) [Mech. Solids 56, 301–311 (2021); DOI: https://doi.org/10.3103/S0025654421030110].

    Article  ADS  Google Scholar 

  11. D. Taylor, “The Theory of Critical Distances Applied to Multiscale Toughening Mechanisms," Eng. Fract. Mech. 209, 392–403 (2019).

    Article  Google Scholar 

  12. V. M. Kornev, “Critical Fracture Curves and the Effective Diameter of the Structure of Brittle and Quasibrittle Materials," Fiz. Mezomekh. 16 (5), 25–34 (2013).

    Google Scholar 

  13. V. D. Kurguzov, N. S. Astapov, and I. S. Astapov, “Fracture Model for Structured Quasibrittle Materials," Prikl. Mekh. Tekh. Fiz. 55 (6), 173–185 (2014) [J. Appl. Mech. Tech. Phys. 55 (6), 1055–1065 (2014); DOI: https://doi.org/10.1134/S0021894414060182].

    Article  ADS  Google Scholar 

  14. S. Li and S. Urat, “An Atomistic-to-Continuum Molecular Dynamics: Theory, Algorithm, and Applications," Comput. Methods Appl. Mech. Eng. 306, 452–478 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Holland and M. Marder, “Ideal Brittle Fracture of Silicon Studied with Molecular Dynamics," Phys. Rev. Lett. 80, 746–749 (1998).

    Article  ADS  Google Scholar 

  16. K. Huang, T. Shimada, N. Ozaki, et al., “A Unified and Universal Griffith-Based Criterion for Brittle Fracture," Int. J. Solids. Struct. 128 (1), 67–72 (2017).

    Article  Google Scholar 

  17. L. Prandtl and W. G. Knauss, “A Thought Model for the Fracture of Brittle Solids," Int. J. Fracture 171 (2), 105–109 (2011).

    Article  Google Scholar 

  18. V. M. Entov and R. L. Salganik, “Prandtl Brittle Fracture Model," Izv. Akad. Nauk SSSR, Mekh. Tv. Tela, No. 6, 87–99 (1968).

    Google Scholar 

  19. McClintock, “Plasticity Aspects of Fracture," in Fracture, Ed. by H. Liebowitz, Vol. 3: Engineering Fundamentals and Environmental Effects (New York–London, Academic Press, 1971).

  20. V. V. Glagolev and A. A. Markin, “Fracture Models for Solid Bodies, Based on a Linear Scale Parameter," Int. J. Solids Struct. 158, 141–149 (2019).

    Article  Google Scholar 

  21. F. Berto, V. V. Glagolev, and A. A. Markin, “Relationship Between \(J_c\) and the Dissipation Energy in the Adhesive Layer of a Layered Composite," Int. J. Fracture 224 (2), 277–284 (2020).

    Article  Google Scholar 

  22. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Nauka, Moscow, 1966; Noordhoff, Leyden 1975).

    Google Scholar 

  23. J. Li and X. B. Zhang, “A Criterion Study for Non-Singular Stress Concentrations in Brittle or Quasi-brittle Materials," Eng. Fracture Mech. 73, 505–523 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Glagolev.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 5, pp. 159-165. https://doi.org/10.15372/PMTF20230516.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glagolev, V.V., Markin, A.A. EFFECT OF A LINEAR PARAMETER ON THE BRITTLE FRACTURE OF AN ELASTIC LAYER WITH A CIRCULAR HOLE. J Appl Mech Tech Phy 64, 871–877 (2023). https://doi.org/10.1134/S0021894423050164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423050164

Keywords

Navigation