Skip to main content
Log in

EXACT POISEUIL-TYPE SOLUTIONS FOR VISCOELASTIC POLYMER FLUID FLOWS THROUGH A CIRCULAR PIPE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Resolving equations describing stationary flows of an incompressible viscoelastic polymer fluid through a circular pipe are derived on the basis of the rheological mesoscopic Pokrovskii–Vinogradov model. Exact solutions of the equations are obtained, and constraints on the values of rheological parameters that ensure their existence are formulated. These results enable one to constructively describe the breakdown of Poiseuille-type laminar flow. The size and orientation of polymer fluid macromolecules play a key role in the mechanics of this process. The mathematical description of the process uses singular points of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. B. Eckhardt, T. M. Schneider, B. Hof, and J. Westerwee, “Turbulence Transition in Pipe Flow," Annual Rev. Fluid Mech. 39, 447–468 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. G. H. McKinley, P. Pakdel, and A. Oztekin, “Rheological and Geometric Scaling of Purely Elastic Flow Instabilities," J. Non-Newtonian Fluid Mech. 67, 19–47 (1996).

    Article  Google Scholar 

  3. S. S. Datta, A. M. Ardekani, P. E. Arratia, et al., “Perspectives on Viscoelastic Flow Instabilities and Elastic Turbulence," Phys. Rev. Fluids 7, 80701 (2022).

    Article  Google Scholar 

  4. M. Khalid, V. Shankar, and G. Subramanian, “A Continuous Pathway between the Elasto-Inertial and Elastic Turbulent States in Viscoelastic Channel Flow," Phys. Rev. Lett. 127, 134502 (2021).

    Article  ADS  Google Scholar 

  5. R. B. Bird, R. C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids. V. 1. Fluid Mechanics (John Wiley and Sons, New York, 1987).

    Google Scholar 

  6. P. J. Oliveira and F. T. Pinho, “Analytical Solution for Fully Developed Channel and Pipe Flow of Phan-Thien–Tanner Fluids," J. Fluid Mech. 387, 271–280 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. D. O. A. Cruz, F. T. Pinho, and P. J. Oliveira, “Analytical Solutions for Fully Developed Laminar Flow of Some Viscoelastic Liquids with a Newtonian Solvent Contribution," J. Non-Newtonian Fluid Mech. 132, 28–35 (2005).

    Article  MATH  Google Scholar 

  8. G. V. Vinogradov, V. H. Pokrovsky, and Yu. G. Yanovsky, “Theory of Viscoelastic Behaviour of Linear Polymers in Unimolecular Approximation and Its Experimental Verification," Rheol. Acta. 11 (3/4), 258–274 (1972).

    Article  Google Scholar 

  9. V. N. Pokrovskii, Yu. A. Altukhov, and G. V. Pyshnograi, “The Mesoscopic Approach to the Dynamics of Polymer Melts: Consequences for the Constitutive Equation," J. Non-Newton Fluid Mech. 76 (1–3), 153–181.

    Article  MATH  Google Scholar 

  10. Yu. A. Altukhov, A. S. Gusev, and G. V. Pyshnograi, Introduction to the Mesoscopic Theory of Fluidity of Polymer Systems (Alt. State Ped. Academic, Barnaul, 2012).

    Google Scholar 

  11. Yu. L. Kuznetsova and O. I. Skuls’kiy, “Effect of Different Flows on the Shear Banding of a Liquid Flow with a Non-Monotonic Flow Curve," Prikl. Mekh. Tekh. Fiz. 60 (1), 27–36 [J. Appl. Mech. Tech. Phys. 60 (1), 22–30 (2019); DOI: 10.1134/S0021894419010048].

    Article  ADS  MathSciNet  Google Scholar 

  12. A. M. Blokhin and D. L. Tkachev, “Lyapunov Instability of Stationary Flows of a Polymeric Fluid in a Channel with Perforated Walls," Mat. Sb. 213 (3), 3–20 (2022).

    MathSciNet  MATH  Google Scholar 

  13. A. M. Blokhin and B. V. Semisalov, “Simulation of the Stationary Nonisothermal MHD Flows of Polymeric Fluids in Channels with Interior Heating Elements," Sib. Zh. Ind. Mat. 23 (2), 17–40 (2020) [J. Appl. Industr. Math. 14, 222–241 (2020); DOI: 10.1134/S1990478920020027].

    Article  MathSciNet  MATH  Google Scholar 

  14. I. E. Golovicheva, G. V. Pyshnograi, and V. I. Popov, “Generalization of the Poiseuille Law Based on the Constitutive Rheological Relation for Polymer Liquids," Prikl. Mekh. Tekh. Fiz. 40 (5), 158–163 (1999) [J. Appl. Mech. Tech. Phys. 40 (5), 917–921 (1999); DOI: 10.1007/BF02468477].

    Article  ADS  Google Scholar 

  15. G. H. Choueiri, J. M. Lopez, A. Varshney, et al., “Experimental Observation of the Origin and Structure of Elasto-Inertial Turbulence," Proc. Nat. Acad. Sci. USA 118 (45), e2102350118 (2021).

    Article  Google Scholar 

  16. A. M. Blokhin and B. C. Semisalov, “A Stationary Flow of an Incompressible Viscoelastic Polymeric Fluid through a Channel with an Elliptical Cross Section," Sib. Zh. Ind. Mat. 17 (4), 38–47 (2015) [J. Appl. Industr. Math. 9 (1), 18–26 (2015)].

    Article  Google Scholar 

  17. I. E. Golovicheva, S. A. Zinovich, and G. V. Pyshnograi, “Effect of the Molecular Mass on the Shear and Longitudinal Viscosity of Linear Polymers," Prikl. Mekh. Tekh. Fiz. 41 (2), 154–160 (2000) [J. Appl. Mech. Tech. Phys. 41 (2), 347–352 (2000); DOI: 10.1007/BF02465279].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Semisalov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 4, pp. 139-151. https://doi.org/10.15372/PMTF20230413.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semisalov, B.V. EXACT POISEUIL-TYPE SOLUTIONS FOR VISCOELASTIC POLYMER FLUID FLOWS THROUGH A CIRCULAR PIPE. J Appl Mech Tech Phy 64, 675–685 (2023). https://doi.org/10.1134/S0021894423040132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423040132

Keywords

Navigation