Skip to main content
Log in

INVESTIGATIONS OF HIGH-SPEED BOUNDARY LAYER STABILIZATION BY USING POROUS COATINGS (REVIEW)

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Activities aimed at studying stabilization of a high-speed boundary layer with the use of porous coatings are reviewed. All types of coatings used in experimental research are considered. It is demonstrated that a porous coating with optimal parameters can stabilize the second mode of disturbances to a large extent and delay the laminar–turbulent transition in a high-speed boundary layer. A review of numerical investigations of porous coatings is presented, and it is shown that special boundary conditions are imposed for porous coating modeling; otherwise, the flow has to be calculated in each pore of the coating. The major part of results obtained on the basis of the linear stability theory and in direct numerical simulations agree well with experimental data. Examples of methods of porous coating optimization and of using promising metamaterials are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. N. Malmuth, A. Fedorov, V. Shalaev, et al., Problems in High Speed Flow Prediction Relevant to Control, N. Y., 1998. (Paper / AIAA; No. 98-2695).

  2. A. V. Fedorov, N. D. Malmuth, A. Rasheed, and H. G. Hornung, “Stabilization of Hypersonic Boundary Layers by Porous Coatings," AIAA J. 39 (4), 605–610 (2001).

    Article  ADS  Google Scholar 

  3. A. V. Boiko, S. V. Kirilovskiy, A. A. Maslov, and T. V. Poplavskaya, “Engineering Modeling of the Laminar–Turbulent Transition: Achievements and Problems (Review)," Prikl. Mekh. Tekh. Fiz. 56 (5), 30–49 (2015) [J. Appl. Mech. Tech. Phys. 56 (5), 761–776 (2015).

    Article  ADS  Google Scholar 

  4. S. A. Gaponov, “Effect of Gas Compressibility on the Stability of a Boundary Layer above a Permeable Surface at Subsonic Velocities," Prikl. Mekh. Tekh. Fiz. 16 (1), 121–125 (1975) [J. Appl. Mech. Tech. Phys. 16 (1), 95–98 (1975).

    Article  ADS  Google Scholar 

  5. Yu. G. Yermolaev, A. D. Kosinov, V. I. Lysenko, et al., “Combined Effect of Permeability and Surface Roughness on Stability and Transition of a Supersonic Boundary Layer on a Flat Plate," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 52–59 (2014).

  6. A. V. Fedorov and D. V. Yumashev, “Theoretical Analysis of Acoustic Instability of a Hypersonic Shock Layer on a Porous Wall," Prikl. Mekh. Tekh. Fiz. 46 (1), 44–54 (2005) [J. Appl. Mech. Tech. Phys. 46 (1), 33–41 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. I. S. Tsyryulnikov, A. A. Maslov, S. G. Mironov, et al., “On the Efficiency of the Method of Sound-Absorbing Coatings in a Vibrationally Excited Hypersonic Flow," Pisma v ZhTF 41 (4), 61–67 (2015).

    Google Scholar 

  8. A. Rasheed, H. G. Hornung, A. V. Fedorov, and N. D. Malmuth, “Experiments on Passive Hypervelocity Boundary-Layer Control using an Ultrasonically Absorptive Surface," AIAA J. 40 (3), 481–489 (2002).

    Article  ADS  Google Scholar 

  9. A. N. Shiplyuk, E. V. Burov, A. A. Maslov, and V. M. Fomin, “Effect of Porous Coatings on Stability of Hypersonic Boundary Layers," Prikl. Mekh. Tekh. Fiz. 45 (2), 169–176 (2004) [J. Appl. Mech. Tech. Phys. 45 (2), 286–291 (2004)].

    Article  ADS  Google Scholar 

  10. V. M. Fomin, A. V. Fedorov, V. F. Kozlov, et al., “Stabilization of a Hypersonic Boundary Layer by ultrasound-Absorbing Coatings with a Regular Microstructure," Dokl. Ross. Akad. Nauk 399 (5), 633–637 (2004).

    Google Scholar 

  11. N. Chokani, D. A. Bountin, A. N. Shiplyuk, and A. A. Maslov, “Nonlinear Aspects of Hypersonic Boundary-Layer Stability on a Porous Surface," AIAA J. 43 (1), 149–155 (2005).

    Article  ADS  Google Scholar 

  12. A. Fedorov, V. Kozlov, A. Shiplyuk, et al. “Stability of Hypersonic Boundary Layer on Porous Wall with Regular Microstructure," AIAA J. 44 (8), 1866–1871 (2006).

    Article  ADS  Google Scholar 

  13. I. V. Egorov, V. G. Soudakov, and A. V. Fedorov, “Numerical Simulation of Stabilization of a Hypersonic Boundary Layer on a Sharp Cone by a Porous Coating," Uch. Zap. TsAGI 39 (1–2), 3–13 (2008).

    Google Scholar 

  14. D. A. Bountin, A. A. Maslov, T. A. Chimytov, and A. N. Shiplyuk, “Bispectral Analysis of Nonlinear Processes in a Hypersonic Boundary Layer on a Porous Surface of a Cone," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 84–90 (2010).

  15. S. Willems and A. Gülhan, “Damping of the Second Mode Instability with Regular and Random Porous Surfaces on a Slender Cone in Hypersonic Flow," in Proc. of the Specialists’ Meeting on Hypersonic Laminar-Turbulent Transition, San Diego (USA), 16–19 Apr. 2012. S. l., 2012.

  16. V. M. Fomin, A. V. Fedorov, A. N. SHiplyuk, et al., “Stabilization of a Hypersonic Boundary Layer by Ultrasound-Absorbing Coatings," Dokl. Akad. Nauk 384 (2), 197–202 (2002).

  17. A. Fedorov, A. Shiplyuk, A. Maslov, et al., “Stabilization of a Hypersonic Boundary Layer using an Ultrasonically Absorptive Coating," J. Fluid Mech. 479, 99–124 (2003).

    Article  ADS  MATH  Google Scholar 

  18. A. Maslov, A. Shiplyuk, A. Sidorenko, et al., “Hypersonic Laminar Flow Control using a Porous Coating of Random Microstructure", Reno, 2006. (Paper / AIAA; No. 2006-1112).

  19. D. A. Bountin, S. V. Lukashevich, A. A. Maslov, and A. N. Shiplyuk, “Effect of the Bluntness of the Nose Part of the Cone and Ultrasound-Absorbing Coating on the Transition in a Hypersonic Boundary Layer," Izv. Ross. Akad. Nauk, Mekh. Zhidk Gaza, No. 6, 74–81 (2010).

  20. A. A. Maslov, A. V. Fedorov, D. A. Bountin, et al., “Experimental Study of Disturbances in Transitional and Turbulent Hypersonic Boundary Layers," AIAA J. 46 (7), 1880–1883 (2008).

    Article  ADS  Google Scholar 

  21. S. V. Lukashevich, A. A. Maslov, A. N. Shiplyuk, et al., “Stabilization of High-Speed Boundary Layer using Porous Coatings of Various Thicknesses," AIAA J. 50 (9), 1897–1904 (2012).

    Article  ADS  Google Scholar 

  22. S. V. Lukashevich, S. O. Morozov, and A. N. Shiplyuk, “Experimental study of the Influence of Parameters of a Passive Porous Coating on the Development of Disturbances in a Hypersonic Boundary Layer," Pisma v ZhTF 38 (23), 83–88 (2012).

    Google Scholar 

  23. S. V. Lukashevich, S. O. Morozov, and A. N. Shiplyuk, “Experimental Study of the Effect of a Passive Porous Coating on Disturbances in a Hypersonic Boundary Layer. 1. Effect of the Porous Coating Length," Prikl. Mekh. Tekh. Fiz. 54 (4), 68–73 (2013) [J. Appl. Mech. Tech. Phys. 54 (4), 572–577 (2013).

    Article  ADS  Google Scholar 

  24. S. V. Lukashevich, S. O. Morozov, and A. N. Shiplyuk, “Experimental Study of the Effect of a Passive Porous Coating on Disturbances in a Hypersonic Boundary Layer. 2. Effect of the Porous Coating Location," Prikl. Mekh. Tekh. Fiz. 57 (5), 127–133 (2016) [J. Appl. Mech. Tech. Phys. 57 (5), 873–878 (2016).

    Article  ADS  Google Scholar 

  25. S. V. Lukashevich, S. O. Morozov, and A. N. Shiplyuk, “Passive Porous Coating Effect on a Hypersonic Boundary Layer on a Sharp Cone at Small Angle of Attack," Exp. Fluids 59, 130 (2018).

    Article  Google Scholar 

  26. S. O. Morozov, S. V. Lukashevich, V. G. Soudakov, and A. N. Shiplyuk, “Experimental Study of the Influence of Small Angles of Attack and Cone Tip Bluntness on Stabilization of a Hypersonic Boundary Layer by a Passive Porous Coating," Teplofiz. Aeromekh. 25 (6), 825–832 (2018).

    Google Scholar 

  27. A. Wagner, K. Hannemann, V. Wartemann, and T. Giese, “Hypersonic Boundary-Layer Stabilization by Means of Ultrasonically Absorptive Carbon-Carbon Material. Pt 1. Experimental Results," Grapevine, 2013. (Paper / AIAA; No. 2013-270).

  28. A. Wagner, M. Kuhn, J. M. Schramm, and K. Hannemann, “Experiments on Passive Hypersonic Boundary Layer Control using Ultrasonically Absorptive Carbon-Carbon Material with Random Microstructure," Exp. Fluids 54, 1606 (2013).

    Article  Google Scholar 

  29. V. Wartemann, T. Giese, T. Eggers, et al., “Hypersonic Boundary-Layer Stabilization by Means of Ultrasonically Absorptive Carbon-Carbon Material. Pt 2. Computational Analysis," Grapevine, 2013. (Paper / AIAA; No. 2013-271). DOI: 102514/6.2013-271.

  30. S. J. Laurence, A. Wagner, H. Ozawa, et al., “Visualization of a Hypersonic Boundary-Layer Transition on a Slender Cone," Reston, 2014. (Paper / AIAA; No. 2014-3110).

  31. V. Wartemann, A. Wagner, T. Eggersz, and K. Hannemann, “Passive Hypersonic Boundary Layer Control by Means of Ultrasonically Absorptive Carbon-Carbon Ceramics: Investigations of Different Boundary Conditions," Glasgow, 2015. (Paper / AIAA; No. 2015-3577).

  32. W. Zhu, M. Shi, Y. Zhu, and C. Lee, “Experimental Study of Hypersonic Boundary Layer Transition on a Permeable Wall of a Flared Cone," Phys. Fluids 32, 011701 (2020).

    Article  ADS  Google Scholar 

  33. W. Zhu, X. Chen, Y. Zhu, and C. Lee, “Nonlinear Interactions in the Hypersonic Boundary Layer on the Permeable Wall," Phys. Fluids 32, 104110 (2020).

    Article  ADS  Google Scholar 

  34. W. Zhu, M. Shi, and C. Lee, “Experimental and Theoretical Study of the Hypersonic Boundary Layer Transition on the Permeable Wall of a Flared Cone," S. l., 2020. (Paper / AIAA; No. 2020-2964).

  35. S. V. Lukashevich, S. O. Morozov, and A. N. Shiplyuk, “Experiments on the Development of Natural Disturbances in a Hypersonic Boundary Layer on Surfaces with Microgrooves," Exp. Fluids 62 (155), 5–14 (2021).

    Article  Google Scholar 

  36. I. S. Tsyryulnikov and S. G. Mironov, “Determination of the Characteristics of Ultrasound Absorption by Thin Porous Coatings," Teplofiz. Aeromekh. 11 (4), 523–532 (2004).

    Google Scholar 

  37. A. Wagner, K. Hannemann, and M. Kuhn, “Ultrasonic Absorption Characteristics of Porous Carbon-Carbon Ceramics with Random Microstructure for Passive Hypersonic Boundary Layer Transition Control," Exp. Fluids 55, 1750 (2014).

    Article  ADS  Google Scholar 

  38. A. Wagner, J. M. Schramm, C. Dittert, et al., “Experimental and Numerical Acoustic Characterization of Ultrasonically Absorptive Porous Materials," S. l., 2018. (Paper / AIAA; No. 2018-2948).

  39. I. V. Egorov, V. G. Soudakov, and A. V. Fedorov, “Numerical Simulation of Stabilization of a Supersonic Boundary Layer on a Flat Plate by a Porous Coating," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 39–49 (2006).

  40. S. V. Lukashevich, “Experimental Study of the Influence of Porous Coatings and Transition in Hypersonic Boundary Layers," Candidate’s Dissertation, Novosibirsk, 2017.

  41. G. A. Brès, T. Colonius, and A. V. Fedorov, “Stability of Temporally Evolving Supersonic Boundary Layers Over Micro-Cavities for Ultrasonic Absorptive Coatings," Seattle, 2008. (Paper / AIAA; No. 2008-4337).

  42. N. D. Sandham and H. Ludeke, “A Numerical Study of Mach 6 Boundary Layer Stabilization by Means of a Porous Surface," AIAA J. 47 (9), 2243–2252 (2009).

    Article  ADS  Google Scholar 

  43. V. Wartemann, H. Ludeke, and N. D. Sandham, “Stability Analysis of Hypersonic Boundary Layer Flow Over Microporous Surfaces," S. l., 2009. (Paper / AIAA; No. 2009-7202).

  44. G. A. Brès, M. Inkman, T. Colonius, and A. V. Fedorov, “Second-Mode Attenuation and Cancellation by Porous Coatings in a High-Speed Boundary Layer," J. Fluid Mech. 726, 312–337 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. C. Hader and H. F. Fasel, “Numerical Investigation of Porous Walls for a Mach 6.0 Boundary Layer using an Immersed Boundary Method," Grapevine, 2011. (Paper / AIAA; No. 2011-3081).

  46. N. De Tullio and N. D. Sandham, “Direct Numerical Simulation of Breakdown to Turbulence in a Mach 6 Boundary Layer Over a Porous Surface," Phys. Fluids 22, 094105 (2010).

    Article  Google Scholar 

  47. C. Hader, C. Brehm, and H. Fasel, “Numerical Investigation of Transition Delay for Various Controlled Breakdown Scenarios in a Mach 6 Boundary Layer using Porous Walls," Atlanta, 2014. (Paper / AIAA; No. 2014-2500).

  48. V. Sousa, D. Patel, J.-B. Chapelier, et al., “Numerical Investigation of Second-Mode Attenuation Over Carbon/Carbon Porous Surfaces," J. Spacecraft Rockets 56 (2), 1–14 (2019).

    Article  Google Scholar 

  49. A. V. Fedorov, A. N. Shiplyuk, A. A. Maslov, et al., “Stabilization of a Hypersonic Boundary Layer using an Ultrasonically Absorptive Coating — CORRIGENDUM," J. Fluid Mech. 769, 725–728 (2015).

    Article  ADS  Google Scholar 

  50. R. Tritarelli, S. Lele, and A. Fedorov, “Stabilization of a Hypersonic Boundary Layer using a Felt-Metal Porous Coating," J. Fluid Mech. 769, 729–739 (2015).

    Article  ADS  Google Scholar 

  51. V. F. Kozlov and A. V. Fedorov, “Acoustic Properties of Rarefied Gases Inside Pores of Simple Geometries," J. Acoust. Soc. Amer. 117, 3402–3412 (2005).

    Article  ADS  Google Scholar 

  52. G. A. Brès, T. Colonius, and A. V. Fedorov, “Acoustic Properties of Porous Coatings for Hypersonic Boundary-Layer Control," AIAA J. 48 (2), 267–274 (2010).

    Article  ADS  Google Scholar 

  53. I. V. Egorov, A. V. Novikov, and A. V. Fedorov, “Numerical Simulation of Stabilization of the Boundary Layer on a Surface with a Porous Coating in a Supersonic Separated Flow," Prikl. Mekh. Tekh. Fiz. 48 (2), 39–47 (2007) [J. Appl. Mech. Tech. Phys. 48 (2), 176–183 (2007).

    Article  ADS  MATH  Google Scholar 

  54. I. V. Egorov, A. V. Fedorov, and V. G. Soudakov, “Receptivity of a Hypersonic Boundary Layer Over a Flat Plate with a Porous Coating," J. Fluid Mech. 601, 165–187 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. I. Egorov, A. Fedorov, A. Novikov, and V. Soudakov, “Direct Numerical Simulation of Supersonic Boundary-Layer Stabilization by Porous Coatings," Reno, 2007. (Paper / AIAA; No. 2007-948).

  56. A. V. Fedorov and N. D. Malmuth, “Parametric Studies of Hypersonic Laminar Flow Control using a Porous Coating of Regular Microstructure," Reno, 2008. (Paper / AIAA; No. 2008-0588).

  57. A. Wagner, V. Wartemann, K. Hannemann, et al., “The Potential of Ultrasonically Absorptive TPS Materials for Hypersonic Vehicles," S. l., 2015. (Paper / AIAA; No. 2015-3576).

  58. X. Tian, R. Zhao, T. Long, and C. Y. Wen, “Reverse Design of Ultrasonic Absorptive Coating for the Stabilization of Mack Modes," AIAA J. 57 (6), 3–6 (2019).

    Article  Google Scholar 

  59. R. Zhao, T. Liu, C. Wen, et al., “Impedance-Near-Zero Acoustic Metasurface for Hypersonic Boundary-Layer Flow Stabilization," Phys. Rev. Appl. 11, 044015 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Morozov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 4, pp. 27-45. https://doi.org/10.15372/PMTF20230403.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukashevich, S.V., Morozov, S.O. & Shiplyuk, A.N. INVESTIGATIONS OF HIGH-SPEED BOUNDARY LAYER STABILIZATION BY USING POROUS COATINGS (REVIEW). J Appl Mech Tech Phy 64, 575–590 (2023). https://doi.org/10.1134/S002189442304003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189442304003X

Keywords

Navigation