Skip to main content
Log in

EXPERIMENTAL AND THEORETICAL STUDY OF THE JET FORMED BY MEANS OF SPUTTERING OF ELECTRODES IN AN ARC DISCHARGE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The parameters of the plasma generated by an arc discharge in gaseous helium at pressures of 3, 25, and 50 torr are studied experimentally and theoretically. The properties and morphology of synthesized soot are investigated by methods of the X-ray diffraction analysis, thermogravimetry, and transmission electron microscopy. A theoretical model is used to predict the radial distribution of the gas temperature, which is consistent with the results of thermocouple measurements. It is demonstrated that a change in the pressure in the arc discharge alters the residence time of carbon vapor in various temperature regions. This fact ensures different conditions of formation of carbon nanostructures and allows obtaining soot with essentially different structural and physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. M. Mohan, V. K. Sharma, E. A. Kumar, et al., “Hydrogen Storage in Carbon Materials: A review," Energy Storage 1 (2), e35 (2019).

    Article  Google Scholar 

  2. S. Iijima, “Helical Microtubules of Graphitic Carbon," Nature 354 (6348), 56–58 (1991).

    Article  ADS  Google Scholar 

  3. N. I. Alekseyev and G. A. Dyuzhev, “Fullerene Formation in an Arc Discharge," Carbon 41 (7), 1343–1348 (2003).

    Article  Google Scholar 

  4. E. G. Gamaly and T. W. Ebbesen, “Mechanism of Carbon Nanotube Formation in the Arc Discharge," Phys. Rev. B 52 (3), 2083 (1995).

    Article  ADS  Google Scholar 

  5. B. D. Annin, Yu. A. Baimova, and R. R. Mulyukov, “Mechanical Properties, Stability, and Buckling of Graphene Sheets and Carbon Nanotubes (Review)," Prikl. Mekh. Tekh. Fiz. 61 (5), 175–189 (2020) [J. Appl. Mech. Tech. Phys. 61 (5), 834–846 (2020)].

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Wu, G. Dong, and L. Guan, “Production of Graphene Sheets by a Simple Helium Arc-Discharge," Phys. E: Low-dimens. Systems Nanostructures 42 (5), 1267–1271 (2010).

    Article  ADS  Google Scholar 

  7. M. Bystrzejewski, O. Labȩdź, W. Kaszuwara, et al., “Controlling the Diameter and Magnetic Properties of Carbon-Encapsulated Iron Nanoparticles Produced by Carbon Arc Discharge," Powder Technol. 246, 7–15 (2010).

    Article  Google Scholar 

  8. D. V. Smovzh, N. A. Kalyuzhnyi, A. V. Zaikovsky, et al., “Synthesis of Hollow Nanoparticles γ-Al2O3," Adv. Nanoparticles 2, 120 (2013).

    Article  Google Scholar 

  9. D. V. Smovzh, S. Z. Sakhapov, A. V. Zaikovsky, et al., “Morphology of Aluminium Oxide Nanostructures after Calcination of Arc Discharge Al–C Soot," Ceramics Intern. 41 (7), 8814–8819 (2015).

    Article  Google Scholar 

  10. A. Pak, A. Ivashutenko, A. Zakharova, et al., “Cubic SiC Nanowire Synthesis by DC Arc Discharge under Ambient Air Conditions," Surface Coatings Technol. 387, 125554 (2020).

    Article  Google Scholar 

  11. L. H. Shen, X. F. Li, J. Zhang, et al., “Synthesis of Single-Crystalline Wurtzite Aluminum Nitride Nanowires by Direct Arc Discharge," Appl. Phys. A 84 (1), 73–75 (2006).

    Article  Google Scholar 

  12. V. I. Berezkin, “Nucleation and Growth of Closed Many-Layer Carbon Particles," Phys. Status Solidi. B 226 (2), 271–284 (2001).

    Article  ADS  Google Scholar 

  13. D. V. Smovzh, I. A. Kostogrud, S. Z. Sakhapov, et al., “The Synthesis of Few-Layered Graphene by the Arc Discharge Sputtering of a Si–C Electrode," Carbon 112, 97–102 (2017).

    Article  Google Scholar 

  14. S. A. Kinelovskii, “Model of Polymorphic Transformation in a Shock Wave. 1. Carbon," Prikl. Mekh. Tekh. Fiz. 61 (4), 141–150 (2020) [J. Appl. Mech. Tech. Phys. 61 (4), 623–631 (2020)].

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Keidar and I. I. Beilis, “Modeling of Atmospheric-Pressure Anodic Carbon Arc Producing Carbon Nanotubes," J. Appl. Phys. 106 (10), 103304 (2009).

    Article  ADS  Google Scholar 

  16. M. Kundrapu and M. Keidar, “Numerical Simulation of Carbon Arc Discharge for Nanoparticle Synthesis," Phys. Plasmas 19 (7), 073510 (2012).

    Article  ADS  Google Scholar 

  17. A. A. Emel’yanov, V. A. Pinaev, M. Yu. Plotnikov, et al., “Optical and Gas-Dynamic Measurements in a Microwave Discharge Plasma Flow under Conditions of Gas-Jet Synthesis of Diamond," Prikl. Mekh. Tekh. Fiz. 63 (3), 54–61 (2022) [J. Appl. Mech. Tech. Phys. 63 (3), 418–424 (2022)].

    Article  ADS  Google Scholar 

  18. D. L. Dorset and M. P. McCourt, “Disorder and the Molecular Packing of C60 Buckminsterfullerene: A Direct Electron-Crystallographic Analysis," Acta Crystallograph. Sect. A. Foundat. Crystallography 50 (3), 344–351 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Andryushchenko.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 3, pp. 12-19. https://doi.org/10.15372/PMTF20230302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andryushchenko, V.A., Boiko, E.V., Sakhapov, S.Z. et al. EXPERIMENTAL AND THEORETICAL STUDY OF THE JET FORMED BY MEANS OF SPUTTERING OF ELECTRODES IN AN ARC DISCHARGE. J Appl Mech Tech Phy 64, 371–377 (2023). https://doi.org/10.1134/S0021894423030021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423030021

Keywords

Navigation