Skip to main content
Log in

ACOUSTIC CHARACTERISTICS OF THE HARTMANN WHISTLE WITH THE HELMHOLTZ RESONATOR

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Based on the turbulence model and the Ffowcs Williams–Hawkings (FW–H) acoustic model, numerical simulations of acoustic characteristics in the Hartmann whistle with the Helmholtz resonator are carried out. The important parameters that control the flow oscillation features of the Hartmann whistle are the stand-off distance, cavity geometry, nozzle pressure ratio, etc. The computational results are compared to experimental data. Under the condition that the jet exit diameter, cavity diameter, nozzle pressure ratio, and stand-off distance remain constant, the mass flow rate and the sound pressure level are calculated as functions of the diameter and length of the Helmholtz resonator. The results show that the sound directivity is similar in the conventional Hartmann whistle and the Hartmann whistle with the Helmholtz resonator, while the sound intensity is higher in the conventional Hartmann whistle. Also, the sound intensity reaches the maximum in the direction perpendicular to the jet. The magnitude of the sound intensity decreases gradually with an increase in the diameter of the Helmholtz resonator, and the decreasing trend in the fundamental resonance frequency is clearly visible. Next, as the length of the Helmholtz resonator increases, the sound intensity first decreases and then increases again. The effect of the resonator length on the fundamental resonance frequency is not large as compared to the resonator diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. V. Sarohia and H. L. Back, “Experimental Investigation of Flow and Heating in a Resonance Tube," Fluid Mech. 94 (4), 649–672 (1979); DOI: 10.1017/S0022112079001233.

    Article  ADS  Google Scholar 

  2. J. C. Gravitt, “Frequency Response of an Acoustic Air-Jet Generator," J. Acoust. Soc. Amer. 31 (11), 1516–1518 (1959).

    Article  ADS  Google Scholar 

  3. E. Brun and R. M. G. Boucher, “Research on the Acoustic Air-Jet Generator: A New Development," J. Acoust. Soc. Amer. 29 (5), 573–583 (1957).

    Article  ADS  Google Scholar 

  4. S. Narayanan, K. Srinivasan, T. Sundararajan, and K. Ramamurthi, “Acoustic Characteristics of Chamfered Hartmann Whistles," J. Sound Vibrat. 330 (11), 2470–2496 (2011); DOI: 10.1016/j.jsv.2010.12.003.

    Article  ADS  Google Scholar 

  5. E. Brocher and E. Duport, “Resonance Tubes in a Subsonic Flow Field," AIAA J. 26 (5), 548–552 (1988); DOI: 10.2514/3.9932.

    Article  ADS  Google Scholar 

  6. J. Iwamoto, “Necessary Conditions for Starting and Maintaining a Stable Oscillatory Flow in a Hartmann–Sprenger Tube," in Flow Visualization IV: Proc. of the 4th Int. Symp., Paris (France), August 26–29, 1986 (Hemisphere, Washington, 1987), pp. 507–512.

  7. A. Hamed and K. Das, “Numerical Simulation and Parametric Study of Hartmann–Sprenger Tube Based Powered Device," AIAA Paper No. 2003-0550 (Reno, 2003); DOI: 10.2514/6.2003-550.

  8. G. Raman and K. Srinivasan, “The Powered Resonance Tube: from Hartmann’s Discovery to Current Active Flow Control Applications," Progr. Aerospace Sci. 45, 97–123 (2009); DOI: 10.1016/j.paerosci.2009.05.001.

    Article  ADS  Google Scholar 

  9. S. Murugappan and E. Gutmark, “Parametric Study of the Hartmann–Sprenger Tube," Experiments Fluids 38 (6), 813–823 (2005); DOI: 10.1007/s00348-005-0977-5.

    Article  ADS  Google Scholar 

  10. E. J. Kerschen and A. B. Cain, “Analytical Modeling of Helmholtz Resonator Based Powered Resonance Tubes," AIAA Paper No. 2004-2691 (Portland, 2004); DOI: 10.2514/6.2004-2691.

  11. A. B. Cain, E. J. Kerschen, J. M. Tassy, and G. Raman, “Simulation of Powered Resonance Tubes: Helmholtz Resonator Geometries," AIAA Paper No. 2004-2690 (Portland, 2004); DOI: 10.2514/6.2004-2690.

  12. P. R. Spalart and S. R. Allmaras, “A One-Equation Turbulence Model for Aerodynamic Flows," AIAA Paper No. 92-0439 (1992); DOI: 10.2514/6.1992-439.

  13. K. S. Brentner, “An Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulations for Moving Surfaces," AIAA J. 36 (8), 1379–1386 (1998).

    Article  ADS  Google Scholar 

  14. C. K. W. Tam, “Jet Noise Generated by Large-Scale Coherent Motion," in Aeroacoustics of Flight Vehicles: Theory and Practice, Vol. 1: Noise Sources (Acoust. Soc. Amer., Melville, 1991), pp. 311–390.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Nam Han.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 2, pp. 75-83. https://doi.org/10.15372/PMTF20230208.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jong, YS., Han, YN., Yun, CY. et al. ACOUSTIC CHARACTERISTICS OF THE HARTMANN WHISTLE WITH THE HELMHOLTZ RESONATOR. J Appl Mech Tech Phy 64, 240–247 (2023). https://doi.org/10.1134/S0021894423020086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423020086

Keywords

Navigation