Skip to main content
Log in

STUDY OF CREEP OF ORTHOTROPIC RODS UNDER TORSION USING THE METHOD OF CHARACTERISTIC PARAMETERS

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The Bhatnagar–Gupta method is used to consider a solution to a rod torsion problem in which the rod has a circular cross section cut in the longitudinal direction from a transversally isotropic plate under creep conditions. It is shown that the solution agrees satisfactorily with the lower and upper estimates of a twisting angular velocity obtained on the basis of the principles of minimum total power and additional dissipation, as well as with the results of numerical simulation in the Ansys finite element program. The Bhatnagar–Gupta solution is used to show the possibility of using the method of characteristic parameters for estimating the stress–strain state and the twist angle rate of a rod under the action of a constant moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. A. M. Lokoshchenko, Modeling of Creep and Long-Term Strength of Metals (Moscow State Indust. Univ., Moscow, 2007).

    Google Scholar 

  2. V. B. Gorev and I. D. Klopotov, “Method for Constructing Torsion Deformation Curves at Large Strains," Zavod. Lab., No. 12, 50–53 (1995).

  3. A. Yu. Larichkin and V. B. Gorev, “Construction of Shear Creep Strains From Pure Torsion of Solid Round Shafts," Nauch.-Tekh. Ved. Sankt.-Peterb. Politekh. Univ. Fiz.-Mat. Nauki, No. 3, 212–219 (2013).

    Google Scholar 

  4. L. M. Kachanov, Creep Theory (Fizmatgiz, Moscow, 1960) [in Russian].

    Google Scholar 

  5. I. A. Banshchikova, “Construction of Constitutive Equations for Orthotropic Materials with Different Properties in Tension and Compression under Creep Conditions," Prikl. Mekh. Tekh. Fiz. 61 (1), 102–117 (2020) [J. Appl. Mech. Tech. Phys. 61 (1), 87–100 (2020); DOI: https://doi.org/10.1134/S0021894420010101].

    Article  ADS  MathSciNet  Google Scholar 

  6. V. B. Gorev and I. Zh. Masanov, “Specific Features of Deformation of Structural Sheet Plates Made of Aluminum Alloys in Creep Regimes," Tekhnol. Mashinostr. No. 7, 13–20 (2009).

  7. I. A. Banshchikova and V. A. Blinov, “Experimental and Theoretical Analysis of the Deformation of Transversely Isotropic Plates under Creep Conditions," Prikl. Mekh. Tekh. Fiz. 57 (3), 129–138 (2016) [J. Appl. Mech. Tech. Phys. 57 (3), 501–509 (2016); DOI: https://doi.org/10.1134/S0021894416030147].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. B. V. Gorev and I. A. Banshchikova, “Creep and Fracture of Reinforcing Materials Described by Kinetic Equations with a Scalar Damage Parameter," Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, No. 2, 90–98 (2009); DOI: 10.14498/vsgtu732.

    Article  Google Scholar 

  9. N. S. Bhatnagar, S. K. Gupta, and R. P. Gupta, “The Torsion of an Orthotropic Rod in the Theory of Creep," Wood Sci. Technol. 3 (2), 167–174 (1969); DOI: 10.1007/BF00639639.

    Article  Google Scholar 

  10. S. G. Lekhnitskii, Torsion of Anisotropic and Inhomogeneous Rods (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  11. I. A. Banshchikova, D. M. Petrov, and I. Yu. Tsvelodub, “Torsion of Circular Rods at Anisotropic Creep," J. Phys.: Conf. Ser. 722 (1), 012004 (2016); DOI: 10.1088/1742-6596/722/1/012004.

    Article  Google Scholar 

  12. I. A. Banshchikova, “Evaluation of the Stress–Strain State of Rod at Torsion From an Anisotropic Material in the Shear Direction at Creep," J. Phys.: Conf. Ser. 894, 012006 (2017); DOI: 10.1088/1742-6596/894/1/012006.

    Article  Google Scholar 

  13. I. A. Banshchikova, I. Yu. Tsvelodub, and D. M. Petrov, “Deformation of Structural Elements Made of Alloys with Reduced Resistance to Creep in Shear Direction," Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 157 (3), 34–41 (2015).

    MathSciNet  Google Scholar 

  14. O. V. Sosnin, “Anisotropy of Creep of Materials," Prikl. Mekh. Tekh. Fiz. 6 (6), 99–104 (1965) [J. Appl. Mech. Tech. Phys. 6 (6), 67–70 (1965); DOI: https://doi.org/10.1007/BF00919316.

    Article  ADS  Google Scholar 

  15. C. M. Stewart, A. P. Gordon, Y. W. Ma, and R. W. Neu, “An Anisotropic Tertiary Creep Damage Constitutive Model for Anisotropic Materials," Int. J. Pressure Vessels Piping 88, 356–364 (2011); DOI: 10.1016/j.ijpvp.2011.06.010.

    Article  Google Scholar 

  16. I. A. Banshchikova, B. V. Gorev, and I. V. Sukhorukov, “Two-Dimensional Problems of Beam Forming under Conditions of Creep," Prikl. Mekh. Tekh. Fiz. 43 (3), 129–139 (2002) [J. Appl. Mech. Tech. Phys. 43 (3), 448–456 (2002); DOI: https://doi.org/10.1023/A:1015382723827].

    Article  ADS  MATH  Google Scholar 

  17. C. A. Schulte, “Predicting Creep Deflections of Plastic Beams," Proc. Amer. Soc. Test. Materials 60, 895–904 (1960).

  18. D. L. Marriott and F. A. Leckie, “Some Observations on the Deflections of Structures during Creep," Proc. Inst. Mech. Eng. 178, 115–125 (1964).

  19. R. G. Sim, “Reference Stress Concepts in the Analysis of Structures During Creep," Int. J. Mech. Sci. 12, 561–573 (1970).

    Article  Google Scholar 

  20. J. B. Martin and F. A. Leckie, “On Creep Rupture of Structures," J. Mech. Phys. Solids 20 (4), 223–238 (1972); DOI: 10.1016/0022-5096(72)90002-6.

    Article  ADS  MATH  Google Scholar 

  21. V. I. Rozenblyum and N. N. Vinogradov, “Calculation of the Creep of Structures with Low Stress Levels," Probl. Prochn., No. 12, 38–39 (1973) [Strength Mater. 5, 1464–1465 (1973); https://doi.org/10.1007/BF00771839].

    Article  Google Scholar 

  22. D. R. Hayhurst and F. A. Leckie, “The Effect of Creep Constitutive and Damage Relationships upon the Rupture Time of a Solid Circular Torsion Bar," J. Mech. Phys. Solids 21 (6), 431–446 (1973); DOI: 10.1016/0022-5096(73)90011-2.

    Article  ADS  Google Scholar 

  23. D. R. Hayhurst, “The Prediction of Creep-Rupture Times of Rotating Disks Using Biaxial Damage Relationships," Trans. ASME, J. Appl. Mech., No. 4, 915–920 (1973); DOI: 10.1115/1.3423187.

    Article  ADS  Google Scholar 

  24. B. V. Gorev, “Estimation of Creep and Long-Term Strength of Structural Elements According to the Method of Characteristic Parameters," Probl. Prochn., No. 4, 30–36 (1979).

  25. R. K. Penny and D. L. Marriott, Design for Creep (Chapman and Hall, Padstow, 1995); DOI: 10.1016/S0308-0161(97)00080-X.

  26. A. M. Othman, D. R. Hayhurst, and B. F. Dyson, “Skeletal Point Stresses in Circumferentially Notched Tension Bars Undergoing Tertiary Creep Modelled with Physically Based Constitutive Equations," Proc. Roy. Soc. London, Ser. A: Math., Phys., Eng Sci. 441 (1912), 343–358 (1993).

    ADS  Google Scholar 

  27. J. Jelwan, M. Chowdhury, and G. Pearce, “Creep Life Design Criterion and Its Applications to Pressure Vessel Codes," Mater. Phys. Mech., No. 11, 157–182 (2011).

    Google Scholar 

  28. I. A. Banshchikova and A. Yu. Larichkin, “Torsion of Solid Rods with Account for the Different Resistance of the Material to Tension and Compression under Creep," Prikl. Mekh. Tekh. Fiz. 59 (6), 123–134 (2018) [J. Appl. Mech. Tech. Phys. 59 (6), 1067–1077 (2018); DOI: https://doi.org/10.1134/S0021894418060123].

    Article  ADS  MathSciNet  Google Scholar 

  29. I. A. Banshchikova, “Calculation of Plates of Double Curvature From Anisotropic Alloys under Creep," Vest. Nizhegorod. Univ. N. I. Lobachevskogo, No. 4, Pt. 4, 1385–1387 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Banshchikova.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 1, pp. 169-184. https://doi.org/10.15372/PMTF20230116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banshchikova, I.A. STUDY OF CREEP OF ORTHOTROPIC RODS UNDER TORSION USING THE METHOD OF CHARACTERISTIC PARAMETERS. J Appl Mech Tech Phy 64, 146–158 (2023). https://doi.org/10.1134/S0021894423010169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423010169

Keywords

Navigation