Skip to main content
Log in

APPROACH TO THE LABORATORY MODELING OF THE FLOW VELOCITY DISTRIBUTION BEHIND A HYDRO-TURBINE RUNNER. 1. DESIGN OF SWIRLER VANES

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Investigation of hydro-turbine runner flow on a full-scale test rig consisting of a spiral casing, a stator, guide vanes, and a runner is difficult due to high cost and labor intensity. Therefore, an approach to modeling the inlet velocity profile of a hydro turbine draft tube is proposed that significantly reduces the cost of testing. In this approach, the draft tube inlet flow is modeled using a special swirl apparatus which is a combination of two swirlers: fixed and rotating. The paper presents the results of analytical calculation of the vane shape that provides a given velocity distribution corresponding to the optimal operation of the hydro turbine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. M. S. Iliescu, G. D. Ciocan, and F. Avellan, “Analysis of the Cavitating Draft Tube Vortex in a Francis Turbine Using Particle Image Velocimetry Measurements in Two-Phase Flow," J. Fluids Eng. 130, 21105 (2008).

    Article  Google Scholar 

  2. H. Keck, and M. Sick, “Thirty Years of Numerical Flow Simulation in Hydro Turbomachines," Acta Mech. 201 (1–4), 211–229 (2008).

    Article  MATH  Google Scholar 

  3. A. B. Korsakov, E. M. Smirnov, and V. D. Goryachev, “CFD Modeling for Performance Prediction of a Hydro Turbine Draft Tube: the Effect of Inlet Boundary Conditions for Two-Equation Turbulence Models," in Proc. of the Conf. on Modelling Fluid Flow (CMFF’12), Budapest (Hungary), September 4–7, 2012, pp. 757–763.

  4. T. Krappel, H. Kuhlmann, O. Kirschner, et al., “Validation of an IDDES-Type Turbulence Model and Application to a Francis Pump Turbine Flow Simulation in Comparison with Experimental Results," Int. J. Heat Fluid Flow 55, 167–179 (2015).

    Article  Google Scholar 

  5. A. V. Minakov, D. V. Platonov, A. A. Dekterev, et al., “The Analysis of Unsteady Flow Structure and Low Frequency Pressure Pulsations in the High-Head Francis Turbines," Int. J. Heat Fluid Flow 53, 183–194 (2015).

    Article  Google Scholar 

  6. S. G. Chernyi and Yu. I. Shokin, Numerical Simulation of Flows in Turbomachines (Nauka, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  7. Y. X. Xiao, Z. W. Wang, J. Zhang, and Y. Y. Luo, “Numerical Predictions of Pressure Pulses in a Francis Pump Turbine with Misaligned Guide Vanes," J. Hydrodyn., Ser. B 26 (2), 250–256 (2014).

    Article  ADS  Google Scholar 

  8. Z. G. Zuo, S. H. Liu, D. M. Liu, et al., “Numerical Analyzes of Pressure Fluctuations Induced by Interblade Vortices in a Model Francis Turbine," J. Hydrodyn., Ser. B 27 (4), 513–521 (2015).

    Article  ADS  Google Scholar 

  9. G. D. Ciocan, M. S. Iliescu, T. C.Vu, et al., “Experimental Study and Numerical Simulation of the FLINDT Draft Tube Rotating Vortex," J. Fluids Eng. 129 (2), 146–158 (2007).

    Article  Google Scholar 

  10. M. J. Cervantes, T. F. Engström, L. H. Gustavsson (Eds.), Proc. of the 3rd IAHR/ERCOFTAC Workshop on Draft Tube Flows, Turbine-99 III, Luleå (Sweden), December 7–9, 2005 (Luleå Tekniska Univ., Luleå, 2006).

  11. M. Cervantes, C. H. Trivedi, O. G. Dahlhaug, and T. Nielsen, “Francis-99 Workshop 1: Steady Operation of Francis Turbines," J. Phys. Conf. Ser. 579, 11001 (2015).

    Article  Google Scholar 

  12. J. Arpe and F. Avellan, “Pressure Wall Measurements in the Whole Draft Tube: Steady and Unsteady Analysis," in Proc. of the 21st IAHR Symp. on Hydraulic Machinery and Systems EPFL/STI/LMH, Lausanne (Switzerland), September 9–12, 2002 (EPFL, 2002), pp. 593–602.

  13. G. D. Ciocan and M. S. Iliescu, PIV Measurements Applied to Hydraulic Machinery: Cavitating and Cavitation-Free Flows (IntechOpen, London, 2012).

    Google Scholar 

  14. A. Favrel, A. Müller, C. Landry, et al., “Study of the Vortex-Induced Pressure Excitation Source in a Francis Turbine Draft Tube by Particle Image Velocimetry," Exp. Fluids 56 (1), 1–15 (2015).

    Article  Google Scholar 

  15. P. P. Jonsson, B. G. Mulu, and M. J. Cervantes, “Experimental Investigation of a Kaplan Draft Tube. Pt 2. Off-Design Conditions," Appl. Energy 94, 71–83 (2012).

    Article  Google Scholar 

  16. O. Kirschner and A. Ruprecht, “Velocity Measurement with PIV in a Straight Cone Draft Tube," in Proc. of the 3rd German–Romanian Workshop on Turbomachinery Hydrodynamics, Timişoara (Romania), May 10–12, 2007 (Politeh. Univ., Timişoara, 2007), pp. 1–9.

  17. V. Meledin, I. Naumov, I. Kuznetsov, et al., “Applying of Specialized Optical Laser and Video Systems for Study of Three-Dimensional Flows in Hydro Turbines," in Proc. of the HYDRO-2006 Maximizing Benefits Hydropower, Porto Carras (Greece), September 24–28, 2006, pp. 1–8.

  18. A. Müller, Physical Governing Mechanisms Self-Excited Pressure Oscillations in Francis Turbines (Ecole Polytech. Federale de Lausanne, Lausanne, 2014).

    Google Scholar 

  19. B. G. Mulu, P. P. Jonsson, and M. J. Cervantes, “Experimental Investigation of a Kaplan Draft Tube. Pt 1. Best Efficiency Point," Appl. Energy 93, 695–706 (2012).

    Article  Google Scholar 

  20. S. Skripkin, M. Tsoy, S. Shtork, and K. Hanjalic, “Comparative Analysis of Twin Vortex Ropes in Laboratory Models of Two Hydro-Turbine Draft-Tubes," J. Hydraul. Res. 54 (4), 450–460 (2016).

    Article  Google Scholar 

  21. R. Susan-Resiga, G. Dan Ciocan, I. Anton, et al., “Analysis of the Swirling Flow Downstream a Francis Turbine Runner," J. Fluids Eng. 128, 177–189 (2006).

    Article  Google Scholar 

  22. S. Tridon, S. Barre, GD Ciocan, L. Tomas L., “Experimental Analysis of the Swirling Flow in a Francis Turbine Draft Tube: Focus on Radial Velocity Component Determination," Europ. J. Mech., B: Fluids 29, 321–335 (2010).

    Article  ADS  MATH  Google Scholar 

  23. “Hydro Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests," IEC 60193, Appl. April 25, 2019.

  24. S. S. Kutateladze, D. N. Lyakhovskii, and V. A. Permyakov, Modeling of Thermal Power Equipment (Energiya, Moscow, 1966) [in Russian].

    Google Scholar 

  25. A. Bosioc, C. Tanasa, and R. Susan-Resiga, “2D LDV Measurements of Swirling Flow in a Simplified Draft Tube," in Proc. of the Conf. on Modeling Fluid Flow (CMFF’09), Budapest (Hungary), September 9–12, 2009, pp. 833–838.

  26. C. Chen, C. Nicolet, K. Yonezawa, et al., “Experimental Study and Numerical Simulation of Cavity Oscillation in a Diffuser with Swirling Flow," Int. J. Fluid Machin. Syst. 3 (1), 80–90 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Litvinov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 1, pp. 76-85. https://doi.org/10.15372/PMTF20230107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustimenko, A.S., Litvinov, I.V., Sonin, V.I. et al. APPROACH TO THE LABORATORY MODELING OF THE FLOW VELOCITY DISTRIBUTION BEHIND A HYDRO-TURBINE RUNNER. 1. DESIGN OF SWIRLER VANES. J Appl Mech Tech Phy 64, 64–72 (2023). https://doi.org/10.1134/S0021894423010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423010078

Keywords

Navigation