Skip to main content
Log in

MODELING OF SYNTHESIS OF COMPOSITE NANOPARTICLES WITH A TiO2 CORE AND SiO2 SHELL IN A PLASMOCHEMICAL REACTOR WITH AGGLOMERATION OF BOTH SPECIES

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The process of single-stage synthesis of composite nanoparticles of titanium dioxide and silicon dioxide in the working zone of a plasmochemical reactor is modeled with the use of the chloride method based on joint oxidation of titanium and silicon tetrachlorides. The synthesis model takes into account the possibility of aggregation not only of titanium dioxide particles forming composite particle cores, but also of silicon dioxide particles, which do not participate in the formation of particle shells. The results predicted by various models (core size, shell thickness, and number of particles of various types) are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. A. M. El-Toni, S. Yin, and T. Sato, “Control of Silica Shell Thickness and Microporosity of Titania–Silica Core–Shell Type Nanoparticles to Depress the Photocatalytic Activity of Titania," J. Colloid Interface Sci. 300 (1), 123–130 (2006).

    Article  ADS  Google Scholar 

  2. I. A. Siddiquey, T. Furusawa, M. Sato, et al., “Control of the Photocatalytic Activity of TiO2 Nanoparticles by Silica Coating with Polydiethoxysiloxane," Dyes Pigments 76 (3), 754–759 (2008).

    Article  Google Scholar 

  3. A. Teleki, B. Buesser, M. C. Heine, et al., “Role of Gas–Aerosol Mixing during in situ Coating of Flame-Made Titania Particles," Industr. Eng. Chem. Res. 48 (1), 85–92 (2009).

    Article  Google Scholar 

  4. B. Buesser and S. E. Pratsinis, “Design of Gas-Phase Synthesis of Core–Shell Particles by Computational Fluid—Aerosol Dynamics," AIChE J. 57 (11), 3132–3142 (2011).

    Article  Google Scholar 

  5. E. A. Grinyaeva, B. Sh. Kochkorov, D. V. Ponomarev, et al., “Plasma-Chemical Synthesis of Crystalline Nano-Sized Composite Oxides," Izv. Tom. Politekh. Univ., Ser. Khim., 317 (3), 33–37 (2010).

    Google Scholar 

  6. P. V. Grishin, V. E. Katnov, G. S. Stepin, et al., “Gas-Phase Synthesis of Composite Particles with the Core–Shell Structure on the Basis of Silicon (IV) and Zinc," Vest. Kazan. Tekhnol. Univ., 19 (14), 56–60 (2016).

    Google Scholar 

  7. S. M. Aulchenko and E. V. Kartaev, “Modeling the One-Stage Synthesis of Composite Particles of the Nucleus–Shell Type in Separate Oxidation of Titanium and Silicon Tetrachlorides in a Plasmachemical Reactor," Inzh.-Fiz. Zh. 93 (1), 114–120 (2020) [J. Eng. Phys. Thermophys. 93, 108–113 (2020].

    Article  ADS  Google Scholar 

  8. S. M. Aulchenko and E. V. Kartaev, “Modeling of Synthesis of Composite ‘Core–Shell’ Particles on the Basis of Joint Oxidation of Titanium and Silicon Tetrachlorides in a Plasma-Chemical Reactor," Prikl. Mekh. Tekh. Fiz. 61 (4), 77–83 (2020) [J. Appl. Mech. Tech. Phys. 61 (4), 566–572 (2020); https://doi.org/10.1134/S0021894420040100].

    Article  ADS  MathSciNet  Google Scholar 

  9. S. M. Aulchenko and E. V. Kartaev, “Control of the Gas-Phase High-Temperature Synthesis of Titanium Dioxide Nanoparticles in the Plasma-Chemical Reactor with the Use of a Quenching Jet," Prikl. Mekh. Tekh. Fiz. 62 (3), 80–90 (2021) [J. Appl. Mech. Tech. Phys. 62 (3), 419–428 (2021); https://doi.org/10.1134/S0021894421030081].

    Article  ADS  Google Scholar 

  10. S. H. Ehrman, S. K. Friedlander, and M. R. Zachariah, “Characteristics of SiO2/TiO2 Nanocomposite Particles Formed in a Premixed Flat Flame," J. Aerosol Sci. 29 (5/6), 687–706 (1998).

    Article  ADS  Google Scholar 

  11. T. G. Elizarova, Quasi-Gas-Dynamic Equations and Methods of Viscous Flow Calculation (Nauch. Mir, Moscow, 2007) [in Russian].

    Book  Google Scholar 

  12. A. Kolesnikov and J. Kekana, “Nanopowders Production in the Plasmachemical Reactor: Modelling and Simulation," Int. J. Chem. Reactor Eng. 9, A83 (2011).

    Article  Google Scholar 

  13. P. Spicer, O. Chaoul, S. Tsantilis, and S. E. Pratsinis, “Titania Formation by TiCl4 Gas Phase Oxidation, Surface Growth and Coagulation," J. Aerosol Sci. 33 (1), 17–34 (2002).

    Article  ADS  Google Scholar 

  14. H. K. Park and K. Y. Park, “Control of Particle Morphology and Size in Vapor-Phase Synthesis of Titania, Silica and Alumina Nanoparticles," KONA Powder Particle J., No. 32, 85–101 (2015).

    Article  Google Scholar 

  15. A. Schild, A. Gutsch, H. Muhlenweg, and S. E. Pratsinis, “Simulation of Nanoparticle Production in Premixed Aerosol Flow Reactors by Interfacing Fluid Mechanics and Particle Dynamics," J. Nanoparticle Res. 1 (2), 305–315 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Aulchenko.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 1, pp. 27-35. https://doi.org/10.15372/PMTF20230104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aulchenko, S.M., Kartaev, E.V. MODELING OF SYNTHESIS OF COMPOSITE NANOPARTICLES WITH A TiO2 CORE AND SiO2 SHELL IN A PLASMOCHEMICAL REACTOR WITH AGGLOMERATION OF BOTH SPECIES. J Appl Mech Tech Phy 64, 23–30 (2023). https://doi.org/10.1134/S0021894423010042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423010042

Keywords

Navigation