Skip to main content
Log in

ALTERNATIVE VIEW ON BLOOD AND BLOOD PLASMA IN THE VASCULATURE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Results of an experimental study of blood properties are reported. To approach the boundary conditions of blood biophysics in a real flow, the viscoelastic measurements are carried out on surfaces coated with a 10-nm thick fibrous layer composed of extracellular matrix protein. For native whole blood, a plateau of the shear elastic modulus as a function of frequency is observed. The immediate consequence of the shear elasticity is that it is necessary to exceed the stress threshold so that blood can flow. This elastic threshold depends on the boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. A. K. Dasanna, J. Mauer, G. Gompper, and D. Fedosov, “Importance of Viscosity Contrast for the Motion of Erythrocytes in Microcapillaries," Front. Physiol. 9, 666913 (2021). DOI: 10.3389/fphy.2021.666913.

    Article  Google Scholar 

  2. J. B. Freund and M. M. Orescanin, “Cellular Flow in a Small Blood Vessel," J. Fluid Mech. 671, 466–490 (2011). DOI: 10.1017/S0022112010005835.

    Article  ADS  MATH  Google Scholar 

  3. O. Yalcin, V. P. Jani, P. C. Johnson, and P. Cabrales, “Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle," Front. Physiol. 9, 00168 (2018). DOI: 10.3389/fphys.2018.00168.

    Article  Google Scholar 

  4. A. R. Pries and T. W. Secomb, “Blood Flow in Microvascular Networks," Microcirculation, 3–36, (2008). DOI: 10.1016/B978-0-12-374530-9.00001-2.

  5. A. R. Pries, T. W. Secomb, M. Sperandio, and P. Gaehtgens, “Blood Flow Resistance during Hemodilution: Effect of Plasma Composition," Cardiovasc. Res. 37, 225–235 (1998). DOI: 10.1016/S0008-6363(97)00226-5.

    Article  Google Scholar 

  6. J. Brands, D. Kliner, H. H. Lipowsky, et al., “New Insights into the Microvascular Mechanisms of Grag Reducing Polymers: Effect on the Cell-Free Layer," PLoS One 8, 1–10 (2013). DOI: 10.1371/journal.pone.0077252.

    Article  Google Scholar 

  7. B. Klitzman and R. Duling, “Microvascular Hematocrit and Red Cell Flow in Resting and Contracting Striated Muscle," Amer. J. Physiol. Heart Circulat. Physiol. 237, H481–H490 (1979).

    Article  Google Scholar 

  8. H. Vink and B. R. Duling, “Identification of Distinct Luminal Domains for Macromolecules, Erythrocytes, and Leukocytes within Mammalian Capillaries," Circulat. Res. 79, 581–589 (1996). DOI: 10.1161/01.RES.79.3.581.

    Article  Google Scholar 

  9. S. Weinbaum, “Whitaker Distinguished Lecture: Models to Solve Mysteries in Biomechanics at the Cellular Level; A New View of Fiber Matrix Layers," Annual Biomed. Engng. 26, 627–643 (1998). DOI: 10.1114/1.134.

    Article  Google Scholar 

  10. X. Zhang, D. Sun, J. W. Song, et al., “Endothelial Cell Dysfunction and Glycocalyx — A Vicious Circle," Matrix Biology 71, 421–431 (2018).

    Article  Google Scholar 

  11. F. E. Curry and C. C. Michel, “A Fiber Matrix Model of Capillary Permeability," Microvasc. Res. 20, 96–99 (1980). DOI: 10.1016/0026-2862(80)90024-2.

    Article  Google Scholar 

  12. E. M. J. Siren, R. Chapanian, I. Constantinescu, et al., “Oncotically Driven Control over Glycocalyx Dimension for Cell Surface Engineering and Protein Binding in the Longitudinal Direction," Sci. Rep. 8, 7581 (2018). DOI: 10.1038/s41598-018-25870-2.

    Article  ADS  Google Scholar 

  13. E. S. Crocket, “Endothelial Glycocalyx and the Revised Starling Principle," PVRI Chronicle 1, 41–46 (2014).

    Google Scholar 

  14. X. Hu and S. Weinbaum, “A New View of Starling’s Hypothesis at the Microstructural Level," Microvascular Res. 58, 281–304 (1999). DOI: 10.1006/mvre.1999.2177.

    Article  Google Scholar 

  15. M. Gouverneur, B. Van Den Berg, M. Nieuwdorp, et al., “Vasculoprotective Properties of the Endothelial Glycocalyx: Effects of Fluid Shear Stress," J. Intern. Med. 259, 393–400 (2006). DOI: 10.1111/j.1365-2796.2006.01625.x.

    Article  Google Scholar 

  16. L. N. Broekhuizen, H. L. Mooij, J. J. P. Kastelein, et al., “Endothelial Glycocalyx as Potential Diagnostic and Therapeutic Target in Cardiovascular Disease," Current Opin. Lipidol. 20, 57–62 (2009). DOI: 10.1097/MOL.0b013e328321b587.

    Article  Google Scholar 

  17. M. Nieuwdorp, T. W. Van Haeften, M. C. L. G. Gouverneur, et al., “Loss of Endothelial Glycocalyx during Acute Hyperglycemia Coincides with Endothelial Dysfunction and Coagulation Aactivation in Vivo," Diabetes 55, 480–486 (2006). DOI: 10.2337/diabetes.55.02.06.db05-1103.

    Article  Google Scholar 

  18. A. Wiesinger, W. Peters, D. Chappell, et al., “Nanomechanics of the Endothelial Glycocalyx in Experimental Sepsis," PLoS One. 8, 1–14 (2013). DOI: 10.1371/journal.pone.0080905.

    Article  Google Scholar 

  19. K. Bai and W. Wang, “Spatio-Temporal Development of the Endothelial Glycocalyx Layer and its Mechanical Property in Vitro," J. Roy. Soc. Interface 9, 2290–2298 (2012). DOI: 10.1098/rsif.2011.0901.

    Article  Google Scholar 

  20. T. W. Secomb, R. Hsu, and A. R. Pries, “A Model for Red Blood Cell Motion in Glycocalyx-Lined Capillaries," Amer. J. Physiol. Heart Circulat. Physiol. 274, H1016-1022 (1998).

    Article  Google Scholar 

  21. A. R. Pries, T. W. Secomb, and P. Gaehtgens, “The Endothelial Surface Layer," Pflugers Arch. Europ. J. Physiol. 440, 653–666 (2000). DOI: 10.1007/s004240000307.

    Article  Google Scholar 

  22. J. M. Squire, M. Chew, G. Nneji, et al., “Quasi-Periodic Substructure in the Microvessel Endothelial Glycocalyx: A Possible Explanation for Molecular Filtering?" J. Structur. Biol. 136, 239–255 (2001). DOI: 10.1006/jsbi.2002.4441.

    Article  Google Scholar 

  23. J. Ferry, Viscoelastic Properties of Polymers (John Wiley and Sons, New York, Chichester, Bribane etc., 1980).

    Google Scholar 

  24. Brevet. 0510988. France, WO 2007/048890 A 1. Procédé et dispositif pour la détermination d’au moins une propriété dynamique d’un materiau fluide ou solide déformable / P. Baroni, H. Mendil, L. Noirez. Dépôt 27.10.2005. Publ. 03.05.2007.

  25. A. Zaccone and L. Noirez, “Universal \(G'\sim L{-}3\) Law for the Low-Frequency Shear Modulus of Confined Liquids," J. Phys. Chem. Lett. 12, 650–657 (2021). DOI: 10.1021/acs.jpclett.0c02953.

    Article  Google Scholar 

  26. U. Windberger, P. Baroni, and L. Noirez, “Human Blood Plasma in Capillary-Size Flow: Revealing Hidden Elasticity and Scale Dependence," J. Biomed. Mater. Res. 1–6 (2022). DOI: 10.1002/jbm.a.37286.

    Article  Google Scholar 

  27. L. Noirez, “Probing Submillimeter Dynamics to Access Static Shear Elasticity from Polymer Melts to Molecular Fluids," in: Polymers and Polymetric Composites: A Reference Series (Springer, Berlin, Heidelberg, 2020). DOI: 101007/978-3-642-37179-0_54-2.

  28. L. Noirez and P. Baroni, “Revealing the Solid-Like Nature of Glycerol at Ambient Temperature," J. Molec. Structure 972, 16–21 (2010).

    Article  ADS  Google Scholar 

  29. D. Baier, T. Müller, T. Mohr, and U. Windberger, “Red Blood Cell Stiffness and Adhesion are Species-Specific Properties Strongly Affected by Temperature and Medium Changes in Single Cell Force Spectroscopy," Molecules 26, 2771 (2021). DOI: 10.3390/molecules26092771.

    Article  Google Scholar 

  30. A. Jafarinia, T. S. Müller, U. Windberger, et al., “Blood Rheology Influence on False Lumen Thrombosis in Type B Aortic Dissection," J. Biomed. Engng Biosci. 7, 13–24 (2020).

    Google Scholar 

  31. K. H. Schneider, P. Aigner, W. Holnthoner, et al., “Decellularized Human Placenta Chorion Matrix as a Favorable Source of Small-Diameter Vascular Grafts," Acta Biomaterialia 29, 125–134 (2016). DOI: 10.1016/j.actbio.2015.09.038.

    Article  Google Scholar 

  32. S. A. Reinhart, T. Schulzki, and W. H. Reinhart, “Albumin Reverses the Echinocytic Shape Transformation of Stored Erythrocytes," Clinic. Hemorheol. Microcirculat. 60, 437–449 (2015). DOI: 10.3233/CH-141899.

    Article  Google Scholar 

  33. J. Wall, F. Ayoub, and P. O’Shea, “Interactions of Macromolecules with the Mammalian Cell Surface," J. Cell Sci. 108, 2673–2682 (1995).

    Article  Google Scholar 

  34. A. R. Williams, “The Effect of Bovine and Human Serum Albumins on the Mechanical Properties of Human Erythrocyte Membranes," Biochim. Biophys. Acta 307, 58–64 (1973).

    Article  Google Scholar 

  35. B. Y. R. H. Adamson and G. Clough, “Plasma Proteins Modify the Endothelial Cell Glycocalyx of Frog Mesenteric Microvessels," Physiology, 473–486 (1992). DOI: 10.1113/jphysiol.1992.sp018934.

    Article  Google Scholar 

  36. A. Zaccone and K. Trachenko, “Explaining the Low-Frequency Shear Elasticity of Confined Liquids," Proc. Nat. Acad. Sci. USA. 117, 19353–19655 (2020). DOI: 10.1073/PNAS.2010787117.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Windberger.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2022, Vol. 63, No. 6, pp. 43-50. https://doi.org/10.15372/PMTF20220605.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Windberger, U., Noirez, L. ALTERNATIVE VIEW ON BLOOD AND BLOOD PLASMA IN THE VASCULATURE. J Appl Mech Tech Phy 63, 950–956 (2022). https://doi.org/10.1134/S0021894422060050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422060050

Keywords

Navigation