Skip to main content
Log in

HYDRODYNAMIC LOADS DURING ACCELERATION OF A CYLINDER UNDER A FREE SURFACE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The accelerated motion of a circular cylinder from the state of rest under the free surface of an infinitely deep ideal fluid was studied. The original mathematical formulation of the problem was reduced to an integrodifferential system of equations for the function specifying the free surface shape and for the normal and tangential velocity components on the free surface. An analytic continuation of the velocity field into the flow region was constructed, and the unsteady loads acting on the cylinder in the initial phase of motion were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. J. Newman, Marine Hydrodynamics (MIT Press, Cambridge, 1985).

    Google Scholar 

  2. C. C. Mei, The Applied Dynamics of Ocean Surface Waves (World Sci., Singapore, 1989).

    MATH  Google Scholar 

  3. L. N. Sretenskii, Theory of Wave Motions in a Fluid (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  4. Yu. A. Stepanyants, I. V. Sturova, and E. V. Teodorovich, “Linear Theory of Formation of Surface and Internal Waves," Itogi Nauki Tekh., Ser. Mekh. Zhidk. Gaza 21, 92–179 (1987).

    Google Scholar 

  5. C. C. Mei, M. Stiassnie, and D. K.-P. Yue, Theory and Applications of Ocean Surface Waves. Pt 1. Linear Aspects (World Sci., Singapore, 2005).

    MATH  Google Scholar 

  6. N. I. Makarenko, “Unsteady Surface Waves in the Presence of a Submerged Obstacle," Vychisl. Tekhol. 11 (4), 179–175 (1995).

  7. N. I. Makarenko, “Nonlinear Interaction of Submerged Cylinder with Free Surface," Trans. ASME. J. Offshore Mech. Arctic Eng. 125 (1), 72–75 (2003).

    Article  Google Scholar 

  8. L. V. Ovsyannikov, N. I. Makarenko, V. I. Nalimov, P. I. Plotnikov, V. Yu. Lyapidevsky, I. V. Sturova, V. I. Bukreev, and V. A. Vladimirov, Nonlinear Problems in the Theory of Surface and Internal Waves (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  9. P. A. Tyvand and T. Miloh, “Free-Surface Flow Due to Impulsive Motion of a Submerged Circular Cylinder," J. Fluid Mech. 286, 67–101 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. P. A. Tyvand and T. Miloh, “Free-Surface Flow Generated by a Small Submerged Circular Cylinder Starting from the Rest," J. Fluid Mech. 286, 103–117 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. P. A. Tyvand and M. Landrini, “Free-Surface Flow of a Fluid Body with an Inner Circular Cylinder in Impulsive Motion," J. Eng. Math. 40, 109–140 (2001).

    Article  ADS  MATH  Google Scholar 

  12. M. V. Norkin, “Formation of a Cavity in the Initial Stage of Motion of a Circular Cylinder in a Fluid with a Constant Acceleration," Prikl. Mekh. Tekh. Fiz. 53 (4), 74–82 (2012) [J. Appl. Mech. Tech. Phys. 53 (4), 532–539 (2012); https://doi.org/10.1134/S0021894412040074].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. V. K. Kostikov and N. I. Makarenko, “Unsteady Free Surface Flow above the Moving Circular Cylinder," J. Eng. Math. 112, 1–17 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. R. M. Pardo and J. Nedic, “Free-Surface Disturbances Due to the Submersion of a Cylindrical Obstacle," J. Fluid Mech. 926 . (A1) (2021); DOI: 10.1017/jfm.2021.462.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. V. Pyatkina, “Small-Time Expansion of Wave Motion Generated by a Submerged Sphere," Prikl. Mekh. Tekh. Fiz. 44 (1), 39–52 (2003) [J. Appl. Mech. Tech. Phys. 44 (1), 32–43 (2003); https://doi.org/10.1023/A:1021721528143].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. E. V. Pyatkina “Justification of the Dipole Approximation in the Problem of Formation of Nonlinear Waves by a Submerged Sphere," Sib. Mat. Zh. 46 (4), 907–927 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  17. H. J. Haussling and R. M. Coleman, “Nonlinear Water Waves Generated by an Accelerated Circular Cylinder," J. Fluid Mech. 461, 343–364 (1979).

    MATH  Google Scholar 

  18. A. G. Terentiev, K. E. Afanasiev, and M. M. Afanasieva, “Simulation of Unsteady Free Surface Flow Problems by the Direct Boundary Element Method," in Proc. IUTAM Symp. Advanced Boundary Element Methods, San-Antonio (USA), April 13–16, 1987 (Springer, Heidelberg, 1988), pp. 427–434.

  19. S. I. Gorlov, “Numerical Methods for Solving Nonlinear Unsteady Problems of Wave Generation by a Body Submerged in a Fluid," Vychisl. Tekhnol. 3 (6), 9–20 (1998).

    MATH  Google Scholar 

  20. M. Greenhow and S. Moyo, “Free Motion of a Cylinder Moving below and through a Free Surface," Appl. Ocean Res. 22, 31–44 (2000).

    Article  Google Scholar 

  21. G. X. Wu and R. E. Taylor “The Coupled Finite Element and Boundary Element Analysis of Nonlinear Interactions between Waves and Bodies," Ocean Eng. 30, 387–400 (2003).

    Article  Google Scholar 

  22. X. Zhu, O. M. Faltinsen, and C. Hu, “Water Entry and Exit of a Horizontal Circular Cylinder," Trans. ASME. J. Offshore Mech. Arctic Eng. 129 (4), 253–264 (2007).

    Article  Google Scholar 

  23. E. Guerber, M. Benoit, S. Grilli, and C. Buvat, “A Fully Nonlinear Implicit Model for Wave Interaction with Submerged Structures in Forced or Free Motion," Eng. Anal. Boundary Elements 36 (7), 1151–1173 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Greenhow and W.-M. Lin, “Nonlinear Free Surface Effects: Experiments and Theory," MIT Tech. Report No. 83-19 (Cambridge, 1983).

  25. M. Greenhow and S. Moyo, “Water Entry and Exit of Horizontal Circular Cylinder," Philos. Trans. Roy. Soc. London. Ser. A 355, 551–563 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. F. Ogilvie, “First-and Second-Order Forces on a Cylinder Submerged under Free Surface," J. Fluid Mech. 16, 451–472 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. G. X. Wu, “Hydrodynamic Forces on a Submerged Circular Cylinder Undergoing Large-Amplitude Motion," J. Fluid Mech. 254, 41–58 (1993).

    Article  ADS  MATH  Google Scholar 

  28. E. O. Tuck, “The Effect of Non-Linearity at the Free Surface on Flow Past a Submerged Cylinder," J. Fluid Mech. 22, 401–404 (1965).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. L. M. Milne-Thomson, Theoretical Hydrodynamics (Courier Corporation, 1996).

    MATH  Google Scholar 

  30. J. V. Wehausen and E. V. Laitone, Surface Waves (Springer Verlag, Berlin, 1960), pp. 446–778. (Handbuch der Physik, Vol. 9.)

    Book  MATH  Google Scholar 

  31. V. E. Zakharov, “Stability of Periodic Waves of Finite Amplitude on the Surface of a Deep Fluid," Prikl. Mekh. Tekh. Fiz., No. 2, 86–94 (1968) [Appl. Mech. Tech. Phys. 9, 190–194 (1968); https://doi.org/10.1007/BF00913182].

    Article  ADS  Google Scholar 

  32. L. I. Sedov, Plane Problems of Hydrodynamics and Aerodynamics (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Makarenko.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2022, Vol. 63, No. 5, pp. 89-99. https://doi.org/10.15372/PMTF20220509.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golikov, A.E., Makarenko, N.I. HYDRODYNAMIC LOADS DURING ACCELERATION OF A CYLINDER UNDER A FREE SURFACE. J Appl Mech Tech Phy 63, 806–815 (2022). https://doi.org/10.1134/S0021894422050091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422050091

Keywords

Navigation