Skip to main content
Log in

VARIATIONAL PROBLEMS FOR COMBUSTION THEORY EQUATIONS

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Variational formulations are proposed for equations describing the stationary states of nonisothermal one-dimensional reactors, including those under convective transfer. Several versions of a numerical solution are considered for the proposed variational formulations on the basis of the method of local variations and the Rayleigh–Ritz method. The special features of using numerical methods to solve the problems under consideration are discussed: convergence and ratio of a spatial grid step to the degree of an approximating polynomial. Modifications of the thermal ignition problem with account for convective transfer and heat losses are considered. A variational principle is proposed that determines the structure of a combustion front at a given propagation velocity. It is shown that this variational principle can be used along with the principle of minimum entropy production for a complete solution to the problem of stationary propagation of an exothermic reaction wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctuation (John Wiley and Sons, 1971).

    MATH  Google Scholar 

  2. I. Gyarmati, “On the Most General Form of the Thermodynamic Integral Principle," Z. Phys. Chem. 2390, 133–137 (1968).

    Article  Google Scholar 

  3. S. Sieniutycz, “Variational Thermomechanical Processes and Chemical Reactions in Distributed Systems," Int. J. Heat Mass Transfer. 40 (14), 3467–3485 (1997).

    Article  MATH  Google Scholar 

  4. N. M. Tsirelman, “Variational Solutions of Complex Heat and Mass Transfer Problems," Adv. Heat Transfer 19, 191–245 (1989).

  5. A. M. Grishin, “Some Problems of the Theory of Ignition," Prikl. Mekh. Tekh. Fiz. 3 (5), 75–79 (1962).

    Google Scholar 

  6. J. G. Graham-Eagle and G. C. Wake, “Theory of Thermal Explosions with Simultaneous Parallel Reactions. 2. The Two- and Three-Dimensional Cases and the Variational Method," Proc. Roy. Soc. A: Math., Phys. Eng. Sci. 401, 195–202 (1985).

    Article  ADS  Google Scholar 

  7. V. S. Zarubin, G. N. Kuvyrkin, and I. Y. Savelyeva, “Variational Estimates of the Parameters of a Thermal Explosion of a Stationary Medium in an Arbitrary Domain," Int. J. Heat Mass Transfer. 135, 614–619 (2019).

    Article  Google Scholar 

  8. A.-M. Wazwaz, “Solving the Non-Isothermal Reaction-Diffusion Model Equations in a Spherical Catalyst by the Variational Iteration Method," Chem. Phys. Lett. 679, 132–136 (2017).

    Article  ADS  Google Scholar 

  9. R. A. Van Gorder and K. Vajravelu, “A Variational Formulation of the Nagumo Reaction—Diffusion Equation and the Nagumo Telegraph Equation," Nonlinear Anal.: Real World Applicat. 11 (4), 2957–2962 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Amat, M. J. Legaz, and P. Pedregal, “Some Remarks on a Variational Method for Stiff Differential Equations," Mathematics 7, 455 (2019).

    Article  Google Scholar 

  11. P. Van and W. Muschik, “Structure of Variational Principles in Nonequilibrium Thermodynamics," Phys. Rev. E 52 (4), 3584–3590 (1995).

    Article  ADS  Google Scholar 

  12. Vit. A. Volpert and Vl. A. Volpert, “Propagation Velocity Estimation for Condensed Phase Combustion," SIAM J. Appl. Math. 51, 1074–1089 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. D. Benguria and M. C. Depassier, “Speed of Fronts of the Reaction-Diffusion Equation," Phys. Rev. Lett. 77, 1171–1173 (1996).

    Article  ADS  MATH  Google Scholar 

  14. J. Xin, “Front Propagation in Heterogeneous Media," SIAM Rev. 42 (2), 161–230 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Stevens, G. Papanicolaou, and S. Heinze, “Variational Principles for Propagation Speeds in Inhomogeneous Media," SIAM J. Appl. Math. 62 (1), 129–148 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. R. Rodrigo and R. M. Miura, “Exact and Approximate Travelling Waves of Reaction-Diffusion Systems via a Variational Approach," Anal. Appl. 9 (2), 187–199 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. I. Karpov, “Minimal Entropy Production as an Approach to the Prediction of the Stationary Rate of Flame Propagation," J. Non-Equilib. Thermodyn. 17, 1–10 (1992).

    Article  ADS  MATH  Google Scholar 

  18. A. I. Karpov and A. V. Kudrin, “Calculation of Stationary Flame Propagation Velocity: Application of the Principles of Thermodynamics of Irreversible Processes," Khim. Fiz. Mezoskop. 14 (1), 5–11 (2012).

    Google Scholar 

  19. A. P. Gerasev, “Nonequilibrium Thermodynamics of Laminar-Combustion Autowaves with Arbitrary Lewis Number," Fiz. Goreniya Vzryva 40 (1), 64–74 (2004) [Combust., Expl., Shock Waves 40 (1), 57–66 (2004); https://doi.org/10.1023/B:CESW.0000013667.59049.72].

    Article  Google Scholar 

  20. K. Rektorys, Variational Methods in Mathematics, Science, and Engineering (Reidel, Dordrecht, 1983).

    MATH  Google Scholar 

  21. F. L. Chernous’ko, “A Local Variation Method for the Numerical Solution of Variational Problems," Zh. Vychisl. Mat. Mat. Fiz. 5 (4), 749–754 (1965) [USSR Comp. Math. Math. 5 (4), 234–242 (1965)].

    Article  Google Scholar 

  22. V. V. Aleksandrov and V. V. Shchennikov, “An Approach to the Numerical Solution of Problems of Mathematical Physics," Zh. Vychisl. Mat. Mat. Fiz. 7 (4), 852–858 (1967) [USSR Comp. Math. Math. 7 (4), 178–186 (1967)].

    Article  MATH  Google Scholar 

  23. N. V. Banichuk, V. M. Petrov, and F. L. Chernous’ko, “The Solution of Variational and Boundary Value Problems by the Method of Local Variations," Zh. Vychisl. Mat. Mat. Fiz. 6 (6), 947–961 (1966) [USSR Comp. Math. Math. 6 (6), 1–21 (1966)].

    Article  MathSciNet  MATH  Google Scholar 

  24. R. S. Schechter, The Variational Method in Engineering (McGraw-Hill, 1967).

    MATH  Google Scholar 

  25. J.-H. He, “Variational Iteration Method—A Kind of Non-Linear Analytical Technique: Some Examples," Int. J. Non-Linear Mech. 34 (4), 699–708 (1999).

    Article  ADS  MATH  Google Scholar 

  26. M. Dehghan and F. Shakeri, “Application of He’s Variational Iteration Method for Solving the Cauchy Reaction—Diffusion Problem," J. Comput. Appl. Math. 214 (2), 435–446 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. C. Liu, C. Wang, and Y. Wang, “A Structure-Preserving, Operator Splitting Scheme for Reaction-Diffusion Equations with Detailed Balance," J. Comput. Phys. 436, 110253 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  28. K.-S. Moon, A. Szepessy, R. Tempone, and G. E. Zouraris, “A Variational Principle for Adaptive Approximation of Ordinary Differential Equations," Numer. Math. 93, 131–152 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  29. J.-H. He, “Variational Principles for Some Nonlinear Partial Differential Equations with Variable Coefficients," Chaos, Solitons Fractals 19 (4), 847–851 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. C. B. Muratov, “A Global Variational Structure and Propagation of Disturbances in Reaction-Diffusion Systems of Gradient Type," Discr. Cont. Dyn. Syst., Ser. B 4 (4), 867–892 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Sieniutycz, “The Variational Principles of Classical Type for Non-Coupled Non-Stationary Irreversible Transport Processes with Convective Motion and Relaxation," Int. J. Heat Mass Transfer 20 (11), 1221–1231 (1977).

    Article  ADS  MATH  Google Scholar 

  32. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987; Plenum, New York, 1969).

    Google Scholar 

  33. A. G. Merzhanov, N. I. Ozerkovskaya, and K. G. Shkadinskii, “Dynamics of Thermal Explosion in the Postinduction Period," Fiz. Goreniya Vzryva 35 (6), 65–70 (1999) [Combust., Expl., Shock Waves 35 (6), 660–665 (1999); https://doi.org/10.1007/BF02674540].

    Article  Google Scholar 

  34. S. I. Anisimov and E. I. Vitkin, Some Variational Problems in Thermal Explosion Theory (Prikl. Mekh. Tekh. Fiz. 7 (4), 150–151 (1966) [J. Appl. Mech. Tech. Phys. 7 (4), 109–110 (1966); https://doi.org/10.1007/BF00917676].

    Article  Google Scholar 

  35. I. G. Donskoi, “Numerical Estimation of Critical Conditions in the Problem of Thermal Explosion with Reactivity Fluctuations," Inform. Mat. Tekhnol. Nauke Upravl., No. 1, 54–65 (2021).

  36. G. N. Kuvyrkin, I. Y. Savelyeva, and V. S. Zarubin, “Estimations of the Parameters of a Thermal Explosion in a Triaxial Ellipsoid," Z. Angew. Math. Phys. 71, 113 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. I. G. Dik and A. V. Tolstykh, “Ignition of a Porous Layer with a Flow of Heat Carrier," Fiz. Goreniya Vzryva 30 (2), 3–7 (1994) [Combust., Expl., Shock Waves 30 (2), 135–139 (1994); https://doi.org/10.1007/BF00786117].

    Article  Google Scholar 

  38. J. M. Avellaneda, F. Bataille, A. Toutant, and G. Flamant, “Variational Entropy Generation Minimization of a Channel Flow: Convective Heat Transfer in a Gas Flow," Int. J. Heat Mass Transfer 160, 120168 (2020).

    Article  Google Scholar 

  39. B. G. Trusov and A. G. Malanichev, “Application of the Variational Principle to Solve the Problem of Chemical Kinetics," Dokl. Akad. Nauk 339 (6), 771–775 (1994).

    Google Scholar 

  40. J. Ross and M. O. Vlad, “Nonlinear Kinetics and New Approaches to Complex Reaction Mechanisms," Ann. Rev. Phys. Chem. 50, 51–78 (1999).

    Article  ADS  Google Scholar 

  41. D. Lebiedz, V. Reinhardt, and J. Siehr, “Minimal Curvature Trajectories: Riemann Geometry Concepts for Slow Manifold Computation in Chemical Kinetics," J. Comput. Phys. 229, 6512–6533 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Donskoi.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 5, pp. 51-61. https://doi.org/10.15372/PMTF20220505.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donskoi, I.G. VARIATIONAL PROBLEMS FOR COMBUSTION THEORY EQUATIONS. J Appl Mech Tech Phy 63, 773–781 (2022). https://doi.org/10.1134/S0021894422050054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422050054

Keywords

Navigation