Skip to main content
Log in

THERMAL-HYDRAULIC FEATURES OF THE TURBULENT FLOW THROUGH RIBBED CHANNELS

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Thermofluid features of the flow through ribbed ducts for various rib arrangements and configurations are investigated numerically. Simulations are performed in a wide range of Reynolds numbers. The impacts of roughness factors (rib width, rib pitch, and rib height), rib arrangements, and rib configurations on the thermal performance of ribbed channels are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. L. Léal, M. Miscevic, P. Lavieille, et al., “An Overview of Heat Transfer Enhancement Methods and New Perspectives: Focus on Active Methods using Electroactive Materials," Intern. J. Heat Mass Transfer. 61, 505–524 (2013). DOI: 10.1016/j.ijheatmasstransfer.2013.01.083.

    Article  Google Scholar 

  2. S. Liu and M. Sakr, “A Comprehensive Review on Passive Heat Transfer Enhancements in Pipe Exchangers," Renewable Sustainable Energy Rev. 19, 64–81 (2013). DOI: 10.1016/j.rser.2012.11.021.

    Article  Google Scholar 

  3. A. Alamgholilou and E. Esmaeilzadeh, “Experimental Investigation on Hydrodynamics and Heat Transfer of Fluid Flow into Channel for Cooling of Rectangular Ribs by Passive and EHD Active Enhancement Methods," Experim. Thermal Fluid Sci. 38, 61–73 (2012). DOI: 10.1016/j.expthermflusci.2011.11.008.

    Article  Google Scholar 

  4. N. S. Dhaidan and A. R. Abbas, “Turbulent Forced Convection Flow Inside Inward-Outward Rib Corrugated Tubes with Different Rib-Shapes," Heat Transfer – Asian Res. 47, 1048–1060 (2018). DOI: 10.1002/htj.21365.

    Article  Google Scholar 

  5. J. Y. San and W. C. Huang, “Heat Transfer Enhancement of Transverse Ribs in Circular Tubes with Consideration of Entrance Effect," Intern. J. Heat Mass Transfer 49, 2965–2971 (2006). DOI: 10.1016/j.ijheatmasstransfer.2006.01.046.

    Article  Google Scholar 

  6. E. A. M. Elshafei, M. M. Awad, E. El-Negiry, and A. G. Ali, “Heat Transfer and Pressure Drop in Corrugated Channels," Energy 35, 101–110 (2010). DOI: 10.1016/j.energy.2009.08.031.

    Article  Google Scholar 

  7. H. A. Mohammed, A. M. Abed, and M. A. Wahid, “The Effects of Geometrical Parameters of a Corrugated Channel within Out-of-Phase Arrangement," Intern. Comm. Heat Mass Transfer 40, 47–57 (2013). DOI: 10.1016/j.icheatmasstransfer.2012.10.022.

    Article  Google Scholar 

  8. H. Pehlivan, I. Taymaz, and Y. İslamoğlu, “Experimental Study of Forced Convective Heat Transfer in a Different Arranged Corrugated Channel," Intern. Comm. Heat Mass Transfer 46, 106–111 (2013). DOI: 10.1016/j.icheatmasstransfer.2013.05.016.

    Article  Google Scholar 

  9. B. V. Ravi, P. Singh, and S. V. Ekkad, “Numerical Investigation of Turbulent Flow and Heat Transfer in Two-Pass Ribbed Channels," Intern. J. Thermal Sci. 112, 31–43 (2017). DOI: 10.1016/j.ijthermalsci.2016.09.034.

    Article  Google Scholar 

  10. Z. Li and Y. Gao, “Numerical Study of Turbulent Flow and Heat Transfer in Cross-Corrugated Triangular Ducts with Delta-Shaped Baffles," Intern. J. Heat Mass Transfer 108, 658–670 (2017). DOI: 10.1016/j.ijheatmasstransfer.2016.12.054.

    Article  Google Scholar 

  11. N. Tokgoz, M. M. Aksoy, and B. Sahin, “Investigation of Flow Characteristics and Heat Transfer Enhancement of Corrugated Duct Geometries," Appl. Thermal Engng. 118, 518–530 (2017). DOI: 10.1016/j.applthermaleng.2017.03.013.

    Article  Google Scholar 

  12. Shubham, A. Saikia, A. Dalala, and S. Pati, “Thermo-Hydraulic Transport Characteristics of non-Newtonian Fluid Flows through Corrugated Channels," Intern. J. Thermal Sci. 129, 201–208 (2018). DOI: 10.1016/j.ijthermalsci.2018.02.005.

  13. S. Al-Zahrani, M. S. Islam, and S. C. Saha, “A Thermo-Hydraulic Characteristics Investigation in Corrugated Plate Heat Exchanger," Energy Procedia 160, 597–605 (2019).

    Article  Google Scholar 

  14. S. Eiamsa-ard and P. Promvonge, “Numerical Study on Heat Transfer of Turbulent Channel Flow over Periodic Grooves," Intern. Comm. Heat Mass Transfer 35 (7), 844–852 (2008). DOI: 10.1016/j.powtec.2015.06.009.

  15. R. K. Ajeel, W. I. Salim, and K. Hasnan, “Experimental and Numerical Investigations of Convection Heat Transfer in Corrugated Channels using Alumina Nanofluid under a Turbulent Flow Regime," Chem. Engng Res. Design 148, 202–217 (2019). DOI: 10.1016/j.cherd.2019.06.003.

    Article  Google Scholar 

  16. T. L. Bergman, F. P. Incropera, D. P. Dewitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley and Sons, Inc., Hoboken, 2011).

    Google Scholar 

  17. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Method (Prentice Hall, Harlow, London, New York, etc., 2007).

    Google Scholar 

  18. V. Gnielinski, “New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow," Intern. Chem. Engng. 16, 359–368 (1976).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Dhaidan.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 4, pp. 95-104. https://doi.org/10.15372/PMTF20220410.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaidan, N.S., Al-Mousawi, F.N. THERMAL-HYDRAULIC FEATURES OF THE TURBULENT FLOW THROUGH RIBBED CHANNELS. J Appl Mech Tech Phy 63, 634–642 (2022). https://doi.org/10.1134/S0021894422040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422040101

Keywords

Navigation