Skip to main content
Log in

WETTING OF LIQUID DROPLETS ON TWO PARALLEL FIBERS WITH DIFFERENT RADII

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The spreading behavior of liquid droplets bridged by filaments is theoretically studied in this work. In our model, the wetted droplets between the fibers can be in one of three different equilibrium morphologies: barrel, bridge, or liquid column. The results show that small-volume droplets undertake a reversible column-to-bridge transformation. However, two distinct transitions are observed for large-volume droplets: column-to-bridge transition in the case of separated fibers and bridge-to-barrel-to-column transition for closely spaced fibers. Particular attention is paid to a hysteretic behavior of large-volume droplets at various inter-fiber distances. It is found that the our results are in good agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. R. D. Heine, “Wetting and Spreading Dynamics," Plasma Process. Polymers. 5, 206–208 (2008).

    Article  Google Scholar 

  2. E. Kissa, “Wetting and Wicking," Textile Res. J. 66, 660–668 (1996).

    Article  Google Scholar 

  3. W. Zhong, “Surface Tension, Wetting and Wicking," in Thermal and Moisture Transport in Fibrous Materials, S. l., 2006. P. 136–155.

  4. Y. H. Chou, S. J. Hong, Y. E. Liang, et al., “Equilibrium Phase Diagram of Drop-on-Fiber: Coexistent States and Gravity Effect," Langmuir. 7, 3685–3692 (2011).

    Article  Google Scholar 

  5. X. H. Sun, H. J. Lee, M. Stephen, and W. Eugene, “Profile of Capillary Bridges between Two Vertically Stacked Cylindrical Fibers under Gravitational Effect," Appl. Surface Sci. 441, 791–797 (H. J.).

    Article  ADS  Google Scholar 

  6. B. Miller, A. B. Coe, and P. N. Ramachandran, “Liquid Rise between Filaments in a V-Configuration," Textile Res. J. 37, 919–924 (1967).

    Article  Google Scholar 

  7. H. M. Princen, “Capillary Rise between Two Cylinders," J. Colloid Interface Sci. 30, 69–75 (1969).

    Article  ADS  Google Scholar 

  8. H. M. Princen, “Capillary Phenomena in Assemblies of Parallel Cylinders. 3. Liquid Columns between Horizontal Parallel Cylinders," J. Colloid Interface Sci. 34, 171–184 (1970).

    Article  ADS  Google Scholar 

  9. B. J. Carroll, “The Accurate Measurement of Contact Angle, Phase Contact Areas, Drop Volume and Laplace Excess Pressure in Drop-on-Fiber Systems," J. Colloid Interface Sci. 57, 488–491 (1976).

    Article  ADS  Google Scholar 

  10. K. Keis, K. G. Kornev, A. V. Neimark, and Y. K. Kamath, “Towards Fiber-Based Micro and Nanofluidics," in Nanoengineered Nanofibrous Materials (Dordrecht; Boston; L.: Kluwer Acad. Publ., 2004). P. 175–182.

  11. A. Virozub, N. Haimovich, and S. Brandon, “Three-Dimensional Simulations of Liquid Bridges between Two Cylinders: Forces, Energies, and Torques," Langmuir. 25, 1283–1284 (2009).

    Article  Google Scholar 

  12. A. Bedarkar, X. F. Wu, and A. Vaynberg, “Wetting of Liquid Droplets on Two Parallel Filaments," Appl. Surface Sci. 256, 7260–7264 (2010).

    Article  ADS  Google Scholar 

  13. X. F. Wu, A. Bedarkar, and K. A. Vaynberg, “Droplets Wetting on Filament Rails: Surface Energy and Morphology Transition," J. Colloid Interface Sci. 341, 326–332 (2010).

    Article  ADS  Google Scholar 

  14. S. Protiere, C. Duprat, and H. A. Stone, “Wetting on Two Parallel Fibers: Drop to Column Transitions," Soft Matter. 9, 271–276 (2012).

    Article  ADS  Google Scholar 

  15. A. Sauret, F. Boulogne, D. Cébron, et al., “Wetting Morphologies on an Array of Fibers of Different Radii," Soft Matter. 11, 4034–4040 (2015).

    Article  ADS  Google Scholar 

  16. A. Sauret, E. Boulogne, B. Soh, et al., “Wetting Morphologies on Randomly Oriented Fibers," Europ. Phys. J. E 38, 62 (2015).

    Article  Google Scholar 

  17. W. Fang and U. D. Schiller, “Hysteresis in Spreading and Retraction of Liquid Droplets on Parallel Fiber Rails," Soft Matter. 17, 5486–5498 (2021).

    Article  ADS  Google Scholar 

  18. H. Aziz and H. V. Tafreshi, “Competing Forces on a Liquid Bridge between Parallel and Orthogonal Dissimilar Fibers," Soft Matter. 15, 6967–6977 (2019).

    Article  ADS  Google Scholar 

  19. R. G. Élfego and L. A. Rodrigo, “Lattice-Boltzmann Simulations of the Dynamics of Liquid Barrels," J. Phys.: Condensed Mater. 32, 214007–214010 (2020).

    Google Scholar 

  20. B. N. J. Persson, “Wet Adhesion with Application to Tree Frog Adhesive Toe Pads and Tires," J. Phys.: Condensed Matter. 19, 376110 (2007).

    Google Scholar 

  21. H. Cooray, H. E. Huppert, and J. A. Neufeld, “Maximal Liquid Bridges between Horizontal Cylinders," Proc. Roy. Soc. A: Math. Phys. Engng Sci. 472 (2192), 20160233 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. G. McHale, M. I. Newton, and B. J. Carroll, “The Shape and Stability of Small Liquid Drops on Fibers," Oil Gas Sci. Technol. 56, 47–54 (2001).

    Article  Google Scholar 

  23. G. McHale and M. I. Newton, “Global Geometry and the Equilibrium Shapes of Liquid Drops on Fibers," Colloids Surfaces A: Physicochem. Engng Aspects. 206, 79–86 (2002).

    Article  Google Scholar 

  24. M. A. Erle, D. C. Dyson, and N. R. Morrow, “Liquid Bridges between Cylinders, in a Torus, and between Spheres," AIChE J. 17, 115–121 (1971).

    Article  Google Scholar 

  25. G. Lian, C. Thornton, and M. J. Adams, “A Theoretical Study of the Liquid Bridge Forces between Two Rigid Spherical Bodies," J. Colloid Interface Sci. 161, 138–147 (1993).

    Article  ADS  Google Scholar 

  26. P. A. Kralchevsky and K. Nagayama, “Capillary Bridges and Capillary-Bridge Forces," Studies Interface Sci. 10, 469–502 (2001).

  27. J. W. Van Honschoten, N. R. Tas, and M. Elwenspoek, “The Profile of a Capillary Liquid Bridge between Solid Surfaces," Amer. J. Phys. 78, 277–286 (2010).

    Article  ADS  Google Scholar 

  28. D. J. Broesch, F. Dutka, and J. Frechette, “Curvature of Capillary Bridges as a Competition between Wetting and Confinement," Langmuir. 29, 15558–15564 (2013).

    Article  Google Scholar 

  29. R. Hongwen, X. Su, and S.-T. Wu, “Effects of Gravity on the Shape of Liquid Droplets," Optics Comm. 283, 3255–3258 (2010).

    Article  ADS  Google Scholar 

  30. C. Duprat and S. Protiere, “Capillary Stretching of Fibers," Frontiers Phys. 111, 56006 (2015).

    Google Scholar 

  31. C. Duprat, S. Protiere, A. Y. Beebe, and H. A. Stone, “Wetting of Flexible Fibre Arrays," Nature 482, 510–513 (2012).

    Article  ADS  Google Scholar 

  32. P. I. C. Teixeira and M. A. C. Teixeira, “The Shape of Two-Dimensional Liquid Bridges," J. Phys.: Condensed Matter. 32, 034002 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yang.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 4, pp. 82-94. https://doi.org/10.15372/PMTF20220409.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H.P., Chen, L. & Yang, L. WETTING OF LIQUID DROPLETS ON TWO PARALLEL FIBERS WITH DIFFERENT RADII. J Appl Mech Tech Phy 63, 622–633 (2022). https://doi.org/10.1134/S0021894422040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422040095

Keywords

Navigation