Skip to main content
Log in

VELOCITY AND ATTENUATION OF LINEAR WAVES IN POROUS MEDIA SATURATED WITH GAS AND ITS HYDRATE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

One of the main methods of searching for gas hydrate deposits is and acoustic logging. Since the correct processing and interpretation of seismic exploration data requires knowledge of the acoustic properties of hydrate-containing rock, wave propagation in this medium is investigated. The rock skeleton is considered to consist of grains cemented with gas hydrate, and is modeled by a homogeneous solid phase with effective parameters. The elastic moduli of the composite skeleton of the porous medium are calculated from the elastic moduli of the grain material and hydrate using a well-known method. The velocities and attenuation coefficients of linear waves are calculated within the framework of a two-velocity model of a porous medium. The calculated data are compared with the experimental data of other authors on sound velocities in hydrate-containing porous samples. The influence of the properties of the base rock, saturating fluid, and hydrate saturation on the propagation of linear waves is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. J. A. Priest, A. I. Best, and C. R. I. Clayton, “A Laboratory Investigation into Seismic Velocities of Methane Gas Hydrate-Bearing Sand," J. Geophys. Res. 110, B04102 (2005).

  2. F.-G. Li, C.-Y. Sun, Q. Zhang, et al., “Laboratory Measurements of the Effects of Methane/Tetrahydrofuran Concentration and Grain Size on the P-Wave Velocity of Hydrate-Bearing Sand," Energy Fuels 25, 2076–2082 (2011); DOI: 10.1021/ef101665v.

    Article  Google Scholar 

  3. W. F. Waite, J. C. Santamarina, M. Rydzy, et al., “Overview of the Inter-Laboratory Comparison of Wave Velocity Measurements in Sand with Gas Hydrates and Other Pore-Filling Materials," Fire Ice. 12 (1), 16–21 (2012).

    Google Scholar 

  4. Q. T. Bu, G. W. Hu, Y. G. Ye, et al., “The Elastic Wave Velocity Response of Methane Gas Hydrate Formation in Vertical Gas Migration Systems," J. Geophys. Engng. 14, 555–569 (2017).

    Article  ADS  Google Scholar 

  5. A. D. Duchkov, A. A. Duchkov, A. Yu. Manakov, et al., “Laboratory Modeling and Measurement of the Acoustic Properties of Methane-Bearing Rock Samples," Dokl. Akad. Nauk 472 (1), 80–84 (2017); DOI: 10.7868/S0869565217010169; Dokl. Earth Sc. 472 (1), 44–48 (2017); DOI: 10.1134/S1028334X17010032.

    Article  ADS  Google Scholar 

  6. A. D. Duchkov, A. A. Duchkov, G. A. Dugarov, and A. N. Drobchik, “Velocity of Ultrasonic Waves in Sand Samples Containing Water, Ice or Methane and Tetrahydrofuran Hydrates (Laboratory Measurements)," Dokl. Akad. Nauk 478 (1), 94–99 (2018); Dokl. Earth Sc. 478 (1), 74–78 (2018); DOI: 10.1134/S1028334X18010014.

    Article  ADS  Google Scholar 

  7. G. A. Dugarov, A. A. Duchkov, A. D. Duchkov, and A. N. Drobchik, “Laboratory Validation of Effective Acoustic Velocity Models for Samples Bearing Hydrates of Different Type," . Natural Gas Sci. Engng. 63, 38–46 (2019); DOI: 10.1016/j.jngse.2019.01.007.

    Article  Google Scholar 

  8. J. Dvorkin, A. Nur, and H. Yin, “Effective Properties of Cemented Granular Materials," Mech. Materials 18, 351–366 (1994).

    Article  Google Scholar 

  9. J. Dvorkin and A. Nur, “Elasticity of High-Porosity Sandstones: Theory for Two North Sea Data Sets," Geophys. 61, 1363–1370 (1996).

    Article  ADS  Google Scholar 

  10. M. B. Helgerud, J. Dvorkin, and A. Nur, “Elastic-Wave Velocity in Marine Sediments with Gas Hydrates: Effective Medium Modeling," Geophys. Res. Lett. 26 (13), 2021–2024 (1999).

    Article  ADS  Google Scholar 

  11. G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  12. T. S. Yun, F. M. Francisca, J. C. Santamarina, and C. Ruppel, “Compressional and Shear Wave Velocity in Uncemented Sediment Containing Gas Hydrate," Geophys. Res. Lett. 32, L10609 (2005).

  13. A. A. Gubaidullin, O. Yu. Boldyreva, and D. N. Dudko, “Wave Propagation in a Porous Medium Saturated with Gas Hydrate," Vestn. Novosib. Gos. Univ. Ser. Mat., Mekh., Inform. 12 (4), 48–52 (2012).

    MATH  Google Scholar 

  14. A. A. Gubaidullin and O. Yu. Boldyreva, “Waves in a Porous Medium with a Gas Hydrate Containing Layer," Prikl. Mekh. Tekh. Fiz. 61 (4), 31–38 (2020); DOI: 10.15372/PMTF20200400; J. Appl. Mech. Tech. Phys. 61 (4), 525–531 (2020); DOI: 10.1134/S0021894420040045.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R. I. Nigmatulin, Fundamentals of Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gubaidullin.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 4, pp. 56-63. https://doi.org/10.15372/PMTF20220406.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, A.A., Boldyreva, O.Y. & Dudko, D.N. VELOCITY AND ATTENUATION OF LINEAR WAVES IN POROUS MEDIA SATURATED WITH GAS AND ITS HYDRATE. J Appl Mech Tech Phy 63, 599–605 (2022). https://doi.org/10.1134/S002189442204006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189442204006X

Keywords

Navigation