Skip to main content
Log in

MODELING OF CRYSTALLIZATION IN A METAL SURFACE LAYER MODIFIED WITH NANOPARTICLES UNDER PULSED INDUCTION HEATING

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Crystallization processes in the case of modification of the surface layer of an iron-based alloy (Fe–C) subjected to a pulse action of a high-frequency electromagnetic field for substrate heating and melting are numerically simulated. The processes of heating, melting, and subsequent solidification of the metal are studied with the use of a mathematical model that describes thermodynamic phenomena. It is postulated that refractory nano-sized particles uniformly distributed over the melt volume favor rapid crystallization during melt undercooling owing to heterogeneous nucleation. It is found that the nucleation and crystallization conditions in different areas of the melt volume are essentially different, and the maximum number of crystallization centers arise in regions where heat removal proceeds with the greatest rate. The particle size distribution in the crystalline structure in the solidified metal volume is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. J. M. Poate, G. Foti, and D. C. Jacobson, Surface Modification and Alloying by Laser, Ion, and Electron Beams (Plenum Press, New York, 1983).

    Book  Google Scholar 

  2. A. N. Cherepanov, V. O. Drozdov, A. G. Malikov, et al., “Effect of Nanostructured Powder Composition on the Characteristics of the Surface Layer of Steel in Laser Treatment," Tyazh. Mashinostr., No. 6, 2–4 (2016).

    Google Scholar 

  3. N. H. Fletcher, “Size Effect in Heterogeneous Nucleation," J. Chem. Phys. 29 (3), 572–576 (1958).

    Article  ADS  Google Scholar 

  4. A. L. Greer, “Overview: Application of Heterogeneous Nucleation in Grain-Refining of Metals," J. Chem. Phys. 145, 211704 (2016).

    Article  ADS  Google Scholar 

  5. A. N. Cherepanov and V. T. Ovcharenko, “Effect of Nanostructured Composite Powders on the Structure and Strength Properties of the High Temperature Inconel 718 Alloy," Phys. Metals Metallography 116 (12), 1279–1284 (2015).

    Article  ADS  Google Scholar 

  6. V. P. Saburov, A. N. Cherepanov, M. F. Zhukov, and G. V. Galevskii, Plasmochemical Synthesis of Fine-Grain Powders and their Application for Modified Metals and Alloys (Nauka, Novosibirsk, 1995) [in Russian].

    Google Scholar 

  7. M. C. Flemings, Solidification Processing (McGraw-Hill, New York, 1974).

    Book  Google Scholar 

  8. Y. Z. Chen, F. Liu, G. C. Yang, and Y. H. Zhou, “Nucleation Mechanisms Involving in Rapid Solidification of Undercooled Ni80.3B19.7 Melts," Intermetallics 19, 221–224 (2011). DOI: 10.1016/j.intermet.2010.08.010.

    Article  Google Scholar 

  9. V. N. Popov, A. N. Cherepanov, and V. G. Shchukin, “Modeling of Modification of the Surface Layer of a Metal with Nanoparticles under Pulsed Induction Heating," Vestn. Mosk. Gos. Tekhn. Univ. im. N. E. Bauman, Ser. Estestv. Nauki, No. 2, 82–96 (2018).

  10. D. Turnbull, “Formation of Crystal Nuclei in Liquid Metals," J. Appl. Phys. 21, 1022–1028 (1950).

    Article  ADS  Google Scholar 

  11. V. N. Popov, A. N. Cherepanov, and V. G. Shchukin, “Numerical Simulation of Solidification of an Iron-Based Binary Alloy Modified with Nanoscale Particles," Teplofiz. Aeromekh. 27 (3), 475–482 (2020) [Thermophys. Aeromech. 27 (3), 449–456 (2020)].

    Article  ADS  Google Scholar 

  12. V. N. Popov and A. N. Cherepanov, “Modeling of the Alloy Solidification Modified by Refractory Nano-Size Particles," Europ. Phys. J. Spec. Topics 229 (2/3), 467–474 (2020).

    Article  ADS  Google Scholar 

  13. F. Li, J. Ning, T. Wang, and S. Y. Liang, “Analytical Modeling and Sensitivity Analysis of the Temperature Distribution in the Planar Scanning Induction Heating Based on 2D Moving Heat Source," J. Mech. Sci. Technol. 33 (10), 5093–5102 (2019). DOI: 10.1007/s12206-019-0948-z.

    Article  Google Scholar 

  14. V. Rudnev, D. Loveless, R. Cook, and M. Black, Handbook of Induction Heating (Marcell Dekker, Inc., New York, 2003).

    Google Scholar 

  15. A. N. Kolmogorov, “On the Statistical Theory of Metal Crystallization," Izv. Akad. Nauk SSSR, Ser. Mat. 1 (3), 355–359 (1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Shchukin.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 4, pp. 27-38. https://doi.org/10.15372/PMTF20220403.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchukin, V.G., Popov, V.N. & Shmagunov, O.A. MODELING OF CRYSTALLIZATION IN A METAL SURFACE LAYER MODIFIED WITH NANOPARTICLES UNDER PULSED INDUCTION HEATING. J Appl Mech Tech Phy 63, 574–583 (2022). https://doi.org/10.1134/S0021894422040034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422040034

Keywords

Navigation