Skip to main content
Log in

MECHANISM OF BURSTING FORMATION IN A SUPERSONIC GAS FLOW PAST A NARROW FLAT PLATE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Theoretical results obtained within the framework of the weakly nonlinear model of a developed boundary layer in a flow past a narrow flat plate are verified with the use of methods of direct numerical simulation of the Navier–Stokes equations. The mechanism of gas ejection (bursting) from the surface of a thermally insulated plate in a supersonic gas flow with the Mach number M = 2 is studied within the framework of the model of complete nonlinear interaction. It is demonstrated that the transition from the laminar to turbulent flow past the plate in the case of weak external perturbations occurs due to resonant three-wave interaction. Theoretical results relating the energy redistribution between the oscillations and the process of spatial structure formation are confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. P. S. Klebanoff and K. D. Tidstrom, “Evolution of Amplified Waves Leading to Transition in a Boundary Layer with Zero Pressure Gradient: Tech. note," NASA. N D-195. Washington, 1959.

    Google Scholar 

  2. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, “The Structure of Turbulent Boundary Layers," J. Fluid Mech. 30, 741–773 (1967).

    Article  ADS  MATH  Google Scholar 

  3. A. D. D. Craik, “Non-Linear Resonant Instability in Boundary-Layers," J. Fluid Mech. 50, 393–413 (1971).

    Article  ADS  MATH  Google Scholar 

  4. S. A. Gaponov and A. A. Maslov, Development of Disturbances in Compressible Flows (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  5. V. A. Zharov, “On the Wave Theory of a Developed Turbulent Boundary Layer," Uch. Zap. TsAGI 17 (5), 28–38 (1986).

    ADS  MathSciNet  MATH  Google Scholar 

  6. P. Huerre and P. Monkewitz, “Absolute and Convective Instabilities in Free Shear Layers," J. Fluid Mech. 159, 151–168 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Y. S. Kachanov, “On the Resonant Nature of the Breakdown of a Laminar Noundary-Layer," J. Fluid Mech. 184, 43–74 (1987).

    Article  ADS  Google Scholar 

  8. C.-M. Ho and P. Huerre, Perturbed Free Shear Layers, Ann. Rev. Fluid Mech. 16, 365–424 (1984).

    Article  ADS  Google Scholar 

  9. S. A. Gaponov and I. I. Maslennikova, “Subharmonic Instability of a Supersonic Boundary Layer," Teplofiz. Aeromekh. 4 (1), 3–12 (1997).

    Google Scholar 

  10. S. M. Churilov, “Resonant Three-Wave Interaction of Waves Having a Common Critical Layer," Nelin. Dinam. 7 (2), 257–282 (2011).

    Google Scholar 

  11. Y. S. Kachanov, V. V. Kozlov, and V. Ya. Levchenko, “Generation and Development of Low-Amplitude Disturbances in a Laminar Boundary Layer in the Presence of an Acoustic Field," Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekhn. Nauk 13 (3), 18–26 (1975).

  12. V. I. Borodulin, Y. S. Kachanov, and A. P. Roschektayev, “Experimental Detection of Deterministic Turbulence," J. Turbulence. 12 (23), 1–34 (2011). DOI: 10.1080/14685248.2011.573792.

    Article  MathSciNet  Google Scholar 

  13. A. D. Kosinov, A. V. Panina, G. L. Kolosov, et al., “Experiments on Relative Receptivity of Three-Dimensional Supersonic Boundary Layer to Controlled Disturbances and its Development," Progr. Flight Phys. 5, 69–80 (2013).

    Article  Google Scholar 

  14. M. F. Ivanov, A. V. Kiverin, and Shevelkina, “Evolution of Vortex Disturbances at Various Stages of Turbulent Flows," Inzh. Zh. Nauka Innovatsii, No. 8, 38–39 (2013).

    Google Scholar 

  15. A. N. Kudryavtsev and D. V. Khotyanovsky, “Direct Numerical Simulation of Transition to Turbulence in a Supersonic Boundary Layer," Teplofiz. Aedromekh. 22 (5), 581–590 (2015) [Thermophys. Aeromech. 22 (5), 559–568 (2015)].

    Article  ADS  Google Scholar 

  16. A. N. Kudryavtsev and D. V. Khotyanovsky, “Numerical Simulation of the Evolution of Unstable Disturbances of Various Modes and Initial Stages of the Laminar–Turbulent Transition in the Boundary Layer at the Freestream Mach Number M = 6," Teplofiz. Aedromekh. 23 (6), 843–852 (2016) [Thermophys. Aeromech. 23 (6), 809–818 (2016)].

    Article  ADS  Google Scholar 

  17. I. I. Lipatov and R. Ya. Tugazakov, “Generation of Coherent Structures in Supersonic Flow Past a Finite-Span Flat Plate," Fluid Dynamics 50 (6), 793–799 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. I. I. Lipatov and R. Ya. Tugazakov, “Nonlinear Instability in the Region of the Transition from Laminar to Turbulent Gas Motion in a Supersonic Three-Dimensional Flow around a Flat Plate," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 178–196 (2018).

  19. R. Ya. Tugazakov, “Three-Dimensional Turbulent Supersonic Flow over a Plate," Fluid Dynamics 54 (5), 705–713 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon Press, Oxford-Elmsford, New York, 1987).

    Google Scholar 

  21. L. R. Ephraim and S. Z. Burstein, “Difference Methods for the Inviscid and Viscous Equations of a Compressible Gas," J. Comput. Phys. 2, 178–196 (1967).

    Article  ADS  Google Scholar 

  22. R. Ya. Tugazakov, “Theory of Separation of a Supersonic Inviscid Gas Flow in Gas-Dynamic Problems," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 118–124 (2016).

  23. N. E. Kochin, “To the Theory of Discontinuities in the Fluid," Collected Scientific Papers (Izd. Akad. Nauk SSSR, Moscow, Leningrad, 1949, Vol. 2, pp. 5–42) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ya. Tugazakov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 2, pp. 37-47. https://doi.org/10.15372/PMTF20220204.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipatov, I.I., Tugazakov, R.Y. MECHANISM OF BURSTING FORMATION IN A SUPERSONIC GAS FLOW PAST A NARROW FLAT PLATE. J Appl Mech Tech Phy 63, 210–219 (2022). https://doi.org/10.1134/S0021894422020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422020043

Keywords

Navigation