Skip to main content
Log in

COUPLED FRACTURE MODEL OF ELASTOPLASTIC MATERIALS BASED ON A KINETIC EQUATION OF DAMAGE ACCUMULATION AND THE PISARENKO–LEBEDEV STRENGTH CRITERION

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A coupled fracture model is proposed and implemented to investigate the deformation and fracture of elastoplastic materials. The fracture model parameters are determined by constructing true stress–strain curves and determining the limiting characteristics of 12Kh18N10T and 10KhSND steel. Numerical simulation results for the fracture of cylindrical rods under tension are presented. It is revealed that the type and nature of tensile fracture of cylindrical samples determined in calculations are in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. P. S. Volegov, D. S. Gribov, and P. V. Trusov, “Damage and Fracture: Review of Experimental Studies," Fiz. Mezomekh. 19 (3), 68–86 (2016) [Phys. Mesomech. 19 (3), 319–331 (2016)].

    Article  Google Scholar 

  2. I. A. Volkov and Yu. G. Korotkikh, Equations of State for Damaged Viscoelastic-Plastic Media (Fizmatlit, Moscow, 2008) [in Russian].

    MATH  Google Scholar 

  3. A. I. Sadyrin, “Simulation of Dynamic Deformation and Fracture of Structural Elastoplastic Materials," Probl. Prochn. Plast. 74, 28–39 (2012).

    Google Scholar 

  4. Strength of Materials and Structural Elements in Extreme Conditions, Ed. by G. S. Pisarenko (Naukova Dumka, Kiev, 1980), Vol. 1 [in Russian].

    Google Scholar 

  5. Strength of Materials and Structural Elements in Extreme Conditions, Ed. by G. S. Pisarenko (Naukova Dumka, Kiev, 1980), Vol. 2 [in Russian].

    Google Scholar 

  6. A. A. Lebedev, “Development of the Theories of Strength in the Mechanics of Materials," Probl. Proch., No. 5, 127–146 (2010) [Strength Mater. 42, 578–592 (2010)].

    Article  Google Scholar 

  7. I. I. Goldenblat and V. A. Kopnov, Strength and Plasticity Criteria of Structural Materials (Mashinostroenie, Moscow, 1968) [in Russian].

    Google Scholar 

  8. B. L. Glushak, S. A. Novikov, A. I. Ruzanov, and A. I. Sadyrin, Fracture of Deformable Media under Pulse Loads (Lobachevsky State Univ. of Nizhny Novgorod, Nizhny Novgorod, 1992) [in Russian].

    Google Scholar 

  9. D. A. Kazakov, S. A. Kapustin, and Yu. G. Korotkikh, Simulation of Deformation and Fracture of Materials and Structures (Lobachevsky State Univ. of Nizhny Novgorod, Nizhny Novgorod, 1999) [in Russian].

    Google Scholar 

  10. A. A. Lebedev, B. I. Kovalchuk, F. F. Giginyak, and V. P. Lamashevskii, Mechanical Properties of Structural Materials under Complex Stress State: Handbook (Izd. Dom “In Yure," Kiev, 2003) [in Russian].

    Google Scholar 

  11. Ya. B. Fridman, Mechanical Properties of Metals (Oborongiz, Moscow, 1952) [in Russian].

    Google Scholar 

  12. J. Lemaitre, Damage Mechanics (The Bath Press, Paris, 1990).

    MATH  Google Scholar 

  13. V. N. Kukudzhanov, “Coupled Models of Elastoplasticity and Damage and Their Integration," Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 6, 103–135 (2006) [Mech. Solids 41 (6), 83–109 (2006)].

    Google Scholar 

  14. N. G. Chausov, E. E. Zasimchuk, L. I. Markashova, et al., “Deformation of Plastic Materials under Dynamic Non-Equilibrium Processes," Zavod. Lab. Diag. Mater. 75 (6), 52–59 (2009).

    Google Scholar 

  15. G. Lemaitre, “Continuum Damage Theory Used to Calculate the Failure of Ductile Materials," Teoret. Osn. Inzh. Rasch. 108 (1), 91–98 (1985).

    Google Scholar 

  16. A. A. Lebedev, N. G. Chausov, and A. Z. Bogdanovich, “Assessment of Limiting Damage in Materials under Static Loading with the Account of a Stress State," Probl. Prochn., No. 2, 35–40 (2002) [Strength of Mater. 34, 131–134 (2002)].

    Article  Google Scholar 

  17. V. G. Bazhenov, S. V. Zefirov, L. N. Kramarev, et al., “Method for Determining the Deformation and Strength Properties of Materials in the Case of Large Strains and Inhomogeneous Stress–Strain State," RF Patent No. 2324162 MPK G 01 N 3/00 (2006.01), Publ. May 10, 2008, Byul. No. 13.

  18. V. G. Bazhenov, S. V. Zefirov, and S. L. Osetrov, “Experimental and Computing Method for Constructing True Deformation Diagrams at Large Strains on the Basis of Tests for Hardness," Dokl. Akad. Nauk 407 (2), 183–185 (2006) [Dokl. Phys. 51, 118–121 (2006)].

    Google Scholar 

  19. V. G. Bazhenov, S. V. Zefirov, and S. L. Osetrov, “Experimental and Computational Method for Identifying the Deformation and Strength Properties of Materials," Zavod. Lab. Diag. Mater. 72 (9), 39–45 (2006).

    Google Scholar 

  20. V. G. Bazhenov, S. V. Zefirov, and S. L. Osetrov, “Method for Identifying the Deformation and Strength Properties of Metals and Alloys," Deform. Razr. Mater., No. 3, 43–48 (2007).

  21. V. G. Bazhenov, V. K. Lomunov, S. L. Osetrov, and E. V. Pavlenkova, “Experimental and Computational Method of Studying Large Elastoplastic Deformations of Cylindrical Shells in Tension to Rupture and Constructing Strain Diagrams for an Inhomogeneous Stress–Strain State," Prikl. Mekh. Tekh. Fiz. 54 (1), 116–124 (2013) [J. Appl. Mech. Tech. Phys. 54 (1), 100–107 (2013)].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bazhenov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 1, pp. 122-129. https://doi.org/10.15372/PMTF20220116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, V.G., Osetrov, S.L., Osetrov, D.L. et al. COUPLED FRACTURE MODEL OF ELASTOPLASTIC MATERIALS BASED ON A KINETIC EQUATION OF DAMAGE ACCUMULATION AND THE PISARENKO–LEBEDEV STRENGTH CRITERION. J Appl Mech Tech Phy 63, 104–110 (2022). https://doi.org/10.1134/S0021894422010163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422010163

Keywords

Navigation