Skip to main content
Log in

NONSTATIONARY THERMOKINETIC MODEL OF SURFACE LASER SCANNING

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper presents a thermophysical model of laser beam scanning of the surface of a two-layer plate whose top layer melts and undergoes shrinkage due to changes in porosity and whose bottom layer (substrate) does not melt. The dependences of the heat capacity, thermal conductivity, and reflection coefficient on porosity are taken into account. Heat loss can occur by both radiation and convection. Results illustrating the non-stationarity of the process throughout the scan are presented. It is shown that the complex thermal cycles and inhomogeneous temperature field are directly related to inhomogeneous shrinkage, leading to the surface topography typical of selective laser melting processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. T. DebRoy, H. L. Wey, J. S. Zuback, et al., “Additive Manufacturing of Metallic Components — Process, Structure and Properties," Progr. Materials Sci. 92, 112–124 (2018). DOI: 10.1016/j.pmatsci.2017.10.001.

    Article  Google Scholar 

  2. S. Webster, H. Lin, F. M. Carter Ill, et al., “Physical Mechanisms in Hybrid Additive Manufacturing: A Process Design Framework," J. Materials Process. Tech. 291, 117048 (2021). DOI: 10.1016/j.jmatprotec.2021.117048.

    Article  Google Scholar 

  3. S. Mellor, L. Hao, and D. Zhang, “Additive Manufacturing: A Framework for Implementation," Intern. J. Product. Economics 149, 194–201 (2014). DOI: 10.1016/j.ijpe.2013.07.008.

    Article  Google Scholar 

  4. H. Paris, H. Moktarian, E. Coatanea, and M. Museau, “Comparative Environmental Impact of Additive and Subtractive Manufacturing Technologies," CIRP Ann. — Manufactur. Technol. 65 (1), 29–32 (2016). DOI: 10.1016/j.cirp.2016.04.036.

    Article  Google Scholar 

  5. M. Strinivas and B. Sridhar Babu, “A Critical Review on Recent Research Methodologies in Additive Manufacturing," Materials Today: Proc. 4 (8), 9049–9059 (2017). DOI: 10.1016/j.matpr.2017.07.258.

    Article  Google Scholar 

  6. M. B. Kumar and P. Sathiya, “Methods and Materials for Additive Manufacturing: A Critical Review on Advancements and Challenges," Thin-walled Structures 159, 107228 (2021). DOI: 10.1016/j.tws.2020.107228.

    Article  Google Scholar 

  7. S. Singh, S. Ramakrishna, and R. Singh, “Material Issues in Additive Manufacturing: A Review," J. Manufactur. Process. 25, 185–200 (2017). DOI: 10.1016/j.jmapro.2016.11.006.

    Article  Google Scholar 

  8. A. Cooke and J. Slotwinski, “Properties of Metal Powders for Additive Manufacturing: A Review of the State of the Art of Metal Powder Property Testing," Nat. Inst. Standards Technol. 7873 (2012). http://dx.doi.org/10.6028/NIST.IR.7873.

  9. J. H. Tan, W. L. E. Wong, and K. W. Dalgarno, “An Overview of Powder Granulometry on Feedstock and Part Performance in the Selective Laser Melting Process," Additive Manufactur. 18, 228–255 (2017). DOI: 10.1016/j.addma.2017.10.011.

    Article  Google Scholar 

  10. M. Baumers, Ph. Dickens, Ch. Tuck, and R. Hague, “The Cost of Additive Manufacturing: Machine Productivity, Economies of Scale and Technology-Push," Technol. Forecast. Soc. Change. 102, 193–201 (2016). DOI: 10.1016/j.techfore.2015.02.015.

    Article  Google Scholar 

  11. S. Cooke, K. Ahmadi, S. Willerth, and R. Herring, “Metal Additive Manufacturing: Technology, Metallurgy and Behavior," J. Manufactur. Process 57, 978–1003 (2020). DOI: 10.1016/j.jmapro.2020.07.025.

    Article  Google Scholar 

  12. S. I. Zhavoronok, A. S. Kurbatov, L. N. Rabinskii, and Yu. O. Solyaev, “Recent Problems of Heat Transfer Simulation in Technological Processes of Selective Laser Melting and Fusion," Teplofiz. Vysok. Temp. 57 (6), 919–952 (2019). DOI: 10.1134/S0040364419060176 [High Temp 57, 916–943 (2019); https://doi.org/10.1134/S0018151X19060178].

    Article  Google Scholar 

  13. Y. Shu, D. Galles, O. A. Tertuliano, et al., “A Critical Look at the Prediction of the Temperature Field Around a Laser-Induced Melt Pool on Metallic Substrates," Sci. Rep. 11, 12224 (2021). DOI: 10.1038/s41598-021-91039-z.

    Article  ADS  Google Scholar 

  14. H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive Manufacturing Methods and Modeling Approaches: A Critical Review," Intern. J. Adv. Manufactur. Technol. 83, 389–405 (2016). DOI: 10.1007/s00170-015-7576-2.

    Article  Google Scholar 

  15. P. S. Cook and A. B. Murphy, “Simulation of Melt Pool Behavior during Additive Manufacturing: Underlying Physics and Progress," Additive Manufactur. 31, 100909 (2020). DOI: 10.1016/j.addma.2019.100909.

    Article  Google Scholar 

  16. K. Q. Le, C. Tang, and C. H. Wong, “On the Study of Keyhole-Mode Melting in Selective Laser Melting Process," Intern. J. Thermal Sci. 145, 105992 (2019). DOI: 10.1016/j.ijthermalsci.2019.105992.

    Article  Google Scholar 

  17. E. V. Karpov, A. G. Malikov, A. M. Orishich, B. D. Annin, “Temperature Effect on the Fracture of Laser Welded Joints of Aviation Aluminum Alloys," Prikl. Mekh. Tekh. Fiz. 59 (5), 191–199 (2018). DOI: 10.15372/PMTF20180522 [J. Appl. Mech. Tech. Phys. 59 (5), 934–940 (2018); https://doi.org/10.1134/S002189441805022X].

    Article  ADS  Google Scholar 

  18. B. D. Annin, V. M. Fomin, E. V. Karpov, et al., “Effect of Mg and Cu on Mechanical Properties of High-Strength Welded Joints of Aluminum Alloys Obtained by Laser Welding," Prikl. Mekh. Tekh. Fiz. 58 (5), 208–217 (2017). DOI: 10.15372/PMTF20170521 [J. Appl. Mech. Tech. Phys. 58 (5), 939–946 (2017); https://doi.org/10.1134/S0021894417050212].

    Article  ADS  Google Scholar 

  19. E. V. Karpov, A. G. Malikov, A. M. Orishich, and B. D. Annin, “Influence of Heat Treatment on the Fracture of a Welded Joint of an Al-Cu-Li Aircraft Alloy at Different Temperatures," Prikl. Mekh. Tekh. Fiz. 61 (1), 91–101 (2020). DOI: 10.15372/PMTF20200109 [J. Appl. Mech. Tech. Phys. 61 (1), 78–86 (2020); https://doi.org/10.1134/S0021894420010095].

    Article  ADS  Google Scholar 

  20. J. P. Oliveira, T. G. Santos, and R. M. Miranda, “Revisiting Fundamental Welding Concepts to Improve Additive Manufacturing: From Theory to Practice," Progr. Materials Sci. 107, 100590 (2020). DOI: 10.1016/j.pmatsci.2019.100590.

    Article  Google Scholar 

  21. M. A. Anisimova, A. G. Knyazeva, M. G. Krinitcin, et al., “Formation of a Porous Titanium Part under Directed Energy Deposition: Theory and Experiment," High Temperature Material Process. 23 (1), 1–23 (2019). DOI: 10.1615/HighTempMatProc.2018029386.

    Article  Google Scholar 

  22. A. G. Knyazeva and Y. P. Sharkeev, “Temperature Calculation for Laser Sintering of Titanium and Niobium Taking into Account Properties Change due to Powder Layer Shrinkage," Key Engng Materials 1 (712), 220–225 (2016). DOI: 10.4028/www.scientific.net/KEM.712.220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Knyazeva.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 6, pp. 130-137. https://doi.org/10.15372/PMTF20210615.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazeva, A.G. NONSTATIONARY THERMOKINETIC MODEL OF SURFACE LASER SCANNING. J Appl Mech Tech Phy 62, 1001–1007 (2021). https://doi.org/10.1134/S0021894421060158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421060158

Keywords

Navigation