Skip to main content
Log in

MAGNETIC FIELD GENERATION IN A CYLINDRICAL PLASMA USING THE DENSITY GRADIENT

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

In this research, we use the fluid theory in an efficient way to perform a theoretical study on a divergent flux of fast electrons produced during interaction of a high-power laser beam with a cylindrical over-dense target. Cylindrical targets consisting of a low-density core with high-density cladding structures are irradiated by an ultra-intense annular laser beam. The analytical model exhibits such structures with a density gradient generating a strong spontaneous interface magnetic field that can collimate the fast electron beam and prevent electrons from escaping. The magnetic field generated by such a cylindrical target is compared with that of planar targets. The results show that cylindrical structures have a more effective potential for producing spontaneous interface magnetic fields and reducing the transverse angular distribution of the fast electron beam. Thus, they will be adequate to increase the possibility of energy transmission to the main target for a more promising fast ignition scheme in inertial confinement fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. S. Bolanos, J. Beard, G. Revet, et al., “Highly-Collimated, High-Charge and Broadband MeV Electron Beams Produced by Magnetizing Solids Irradiated by High-Intensity Lasers," Matter Radiat. Extremes. 4, 044401 (2019).

    Article  Google Scholar 

  2. A. P. L. Robinson, D. J. Strozzi, J. R. Davies, et al., “Theory of Fast Electron Transport for Fast Ignition," Nuclear Fusion. 54, 054003 (2014).

    Article  ADS  Google Scholar 

  3. R. J. Gray, D. C. Carroll, X. H. Yuan, et al., “Laser Pulse Propagation and Enhanced Energy Coupling to Fast Electrons in Dense Plasma Gradients," New J. Phys. 16, 113075 (2014).

    Article  ADS  Google Scholar 

  4. A. Macchi, M. Borghesi, and M. Passoni, “Ion Acceleration by Super-Intense Laser-Plasma Interaction," Rev. Modern Phys. 85, 751 (2013).

    Article  ADS  Google Scholar 

  5. P. A. Norreys, D. Batani, S. Baton, et al., “Fast Electron Energy Transport in Solid Density and Compressed Plasma," Nuclear Fusion 54, 054004 (2014).

    Article  ADS  Google Scholar 

  6. A. P. L. Robinson, H. Schmitz, and J. Pasley, “Rapid Embedded Wire Heating via Resistive Guiding of Laser-Generated Fast Electrons as a Hydrodynamic Driver," Phys. Plasmas 20, 122701 (2013).

    Article  ADS  Google Scholar 

  7. D. A. Hammer and M. Rostoker, “Propagation of High Current Relativistic Beams," Phys. Fluids 13, 1831 (1970).

    Article  ADS  Google Scholar 

  8. J. S. Green, V. M. Ovchinnikov, R. G. Evans, et al., “Effect of Laser Intensity on Fast-Electron-Beam Divergence in Solid-Density Plasmas," Phys. Rev. Lett. 100, 015003 (2008).

    Article  ADS  Google Scholar 

  9. S. Kar, A. P. L. Robinson, D. C. Carroll, et al., “Guiding of Relativistic Electron Beams in Solid Targets by Resistively Controlled Magnetic Fields," Phys. Rev. Lett. 102, 055001 (2009).

    Article  ADS  Google Scholar 

  10. B. Ramakrishna, S. Kar, A. P. L. Robinson, et al., “Laser-Driven Fast Electron Collimation in Targets with Resistivity Boundary," Phys. Rev. Lett. 105, 135001 (2008).

    Article  ADS  Google Scholar 

  11. A. P. L. Robinson, M. H. Key, and M. Tabak, “Focusing of Relativistic Electrons in Dense Plasma using a Resistivity-Gradient-Generated Magnetic Switchyard," Phys. Rev. Lett. 108, 125004 (2012).

    Article  ADS  Google Scholar 

  12. H. B. Cai, K. Mima, W. M. Zhou, et al., “Enhancing the Number of High-Energy Electrons Deposited to a Compressed Pellet via Double Cones in Fast Ignition," Phys. Rev. Lett. 102, 245001 (2009).

    Article  ADS  Google Scholar 

  13. D. J. Strozzi, M. Tabak, D. J. Larson, et al., “Fast-Ignition Transport Studies: Realistic Electron Source, Integrated Particle-in-Cell, and Hydrodynamic Modeling Imposed Magnetic Fields," Phys. Plasmas 19, 072711 (2012).

    Article  ADS  Google Scholar 

  14. M. Bailly-Grandvaux, J. J. Santos, C. Bellei, et al., “Guiding of Relativistic Electron Beams in the Dense Matter by Laser-Driven Magneto-Static Fields," Nature Comm. 9, 102 (2018).

    Article  ADS  Google Scholar 

  15. H. B. Cai, S. P. Zhu, M. Chen, et al., “Magnetic-Field Generation and Electron-Collimation Analysis for Propagating Fast Electron Beams in Over-Dense Plasmas," Phys. Rev. E 83, 036408 (2011).

    Article  ADS  Google Scholar 

  16. S. Malko, X. Vaisseau, F. Perez, et al., “Enhanced Relativistic-Electron Beam Collimation using Two Consecutive Laser Pulses," Sci. Rep. 9, 14061 (2019).

    Article  ADS  Google Scholar 

  17. N. G. Borisenko, A. A. Akunets, V. S. Bushuev, et al., “Motivation and Fabrication Methods for Inertial Confinement Fusion and Inertial Fusion Energy Targets," Laser Particle Beams 50, 521 (2003).

    Google Scholar 

  18. N. A. Tahir, S. Udrea, C. Deutsch, et al., “Target Heating in High-Energy-Density Matter Experiments at the Proposed GSI FAIR Facility: Non-Linear Bunch Rotation in SIS100 and Optimization of Spot Size and Pulse Length," Laser Particle Beams 45, 822 (2004).

    Google Scholar 

  19. A. Djaoui, “ICF Target Ignition Studies in Planar, Cylindrical, and Spherical Geometries," Laser Particle Beams 19, 169–173 (2001).

    Article  ADS  Google Scholar 

  20. S. Z. Wu, C. T. Zhou, and S. P. Zhu, “Effect of Density Profile on Beam Control of Intense Laser-Generated Fast Electrons," Phys. Plasmas 17, 063103 (2010).

    Article  ADS  Google Scholar 

  21. J. R. Davies, “Electric and Magnetic Field Generation and Target Heating by Laser-Generated Fast Electrons," Phys. Rev. E 68, 056404 (2003).

    Article  ADS  Google Scholar 

  22. J. R. Davies, J. S. Green, and P. A. Norreys, “Electron Beam Hollowing in Laser — Solid Interactions," Plasma Phys. Controll. Fusion. 48, 1181 (2006).

    Article  ADS  Google Scholar 

  23. J. B. Rosenzweig, B. N. Breizman, T. Katsouleas, and J. J. Su, “Acceleration and Focusing of Electrons in Two-Dimensional Nonlinear Plasma Wake-Fields," Phys. Rev. A 44, R6189 (1991).

    Article  ADS  Google Scholar 

  24. I. D. Kaganovich, G. Shvets, E. Startsev, and R. C. Davidson, “Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-Formed Plasma," Phys. Plasmas. 8 (9), 4180 (2001).

    Article  ADS  Google Scholar 

  25. E. A. Startsev, R. C. Davidson, and M. Dorf, “Two-Stream Stability Properties of the Return-Current Layer for Intense Ion Beam Propagation through Background Plasma," Phys. Plasmas. 16, 092101 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Niroozad.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 6, pp. 45-55. https://doi.org/10.15372/PMTF20210606.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niroozad, M., Farokhi, B. MAGNETIC FIELD GENERATION IN A CYLINDRICAL PLASMA USING THE DENSITY GRADIENT. J Appl Mech Tech Phy 62, 927–935 (2021). https://doi.org/10.1134/S0021894421060067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421060067

Keywords

Navigation