Skip to main content
Log in

NUMERICAL SIMULATION OF EVOLUTION OF MAGNETIC MICROSTRUCTURE IN HEUSLER ALLOYS

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A microstructural model of behavior of ferromagnetic material (Heusler alloy) in a magnetic field is constructed within the framework of the theory of micromagnetism. The process dynamics is described by the Landau—Lifshitz—Hilbert equation. The Galerkin procedure is used to assign variational equations to differential relations. A herringbone-type martensitic structure (twinned variant of martensite) with magnetic domains arranged at an angle of 180° is considered. The twin boundaries act as 90-degree magnetic domain walls. The evolution of this magnetic structure is investigated, namely the motion and interaction of the 180-degree walls of this magnetic domain in the presence of an external magnetic field applied in different directions. The finite element method simulates the formation of these walls and the magnetization vector distribution in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, et al., “Shape Memory Ferromagnets," Uspekhi Fizicheskikh Nauk 173 (6), 577–607 (2003) [Physics-Uspekhi 46 (6), 559–588 (2003)]. DOI: 10.3367/UFNr.0173.200306a.0577.

    Article  Google Scholar 

  2. A. Kazaryan and Y. Wang, “Development of Magnetic Domains in Hard Ferromagnetic Thin Films of Polytwinned Microstructure," J. Appl. Phys. 92, 7408–7414 (2002). DOI: 10.1063/1.1522494.

    Article  ADS  Google Scholar 

  3. X.-P. Wan, K. Wang, and E. Weinan, “Simulations of 3-D Domain Wall Structures in Thin Films," Discrete Continuous Dynamic Systemts. B, No. 6, 373–389 (2006). DOI: 10.3934/dcdsb.2006.6.373.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Bustamante, A. Dorfmann, and R. W. Ogden, “A Nonlinear Magnetoelastic Tube Under Extension and Inflation in an Axial Magnetic Field: Numerical Solution," J. Engng Math. 59, 139–153 (2007). DOI: 10.1007/s10665-006-9088-4.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. K. Haldar, B. Kiefer, and D. C. Lagoudas, “Finite Element Analysis of the Demagnetization Effect and Stress Inhomogeneities in Magnetic Shape Memory Alloy Samples," Philos. Mag. 91, 4126–4157 (2011). DOI: 10.1080/14786435.2011.602031.

    Article  ADS  Google Scholar 

  6. A. A. Rogovoy, “Formalized Approach to Construction of the State Equations for Complex Media Under Finite Deformations," Continuum Mech. Thermodynamics. 24, 81–114 (2012). DOI: 10.1007/s00161-011-0220-y.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. Rogovoy and O. Stolbova, “Modeling the Magnetic Field Control of Phase Transition in Ferromagnetic Shape Memory Alloys," Intern. J. Plasticity 85, 130–155 (2016). DOI: 10.1016/j.ijplas.2016.07.006.

    Article  Google Scholar 

  8. C. Mennerich, F. Wendler, M. Jainta, and B. Nestler, “A Phase-Field Model for the Magnetic Shape Memory Effect," Arch. Mech. 63, 549–571 (2011).

    MathSciNet  MATH  Google Scholar 

  9. Y. M. Jin, “Domain Microstructure Evolution in Magnetic Shape Memory Alloys: Phase-Field Model and Simulation," Acta Materialia 57, 2488–2495 (2009). DOI: 10.1016/j.actamat.2009.02.003.

    Article  ADS  Google Scholar 

  10. L. J. Li, C. H. Lei, Y. C. Shu, and J. Y. Li, “Phase-Field Simulation of Magnetoelastic Couplings in Ferromagnetic Shape Memory Alloys," Acta Materialia 59, 2648–2655 (2011). DOI: 10.1016/j.actamat.2011.01.001.

    Article  ADS  Google Scholar 

  11. A. A. Rogovoy, O. V. Stolbov, and O. S. Stolbova, “The Microstructural Model of the Ferromagnetic Material Behavior in an External Magnetic Field," Magnetochemistry 7 (7), 1–19 (2021). DOI: 10.3390/magnetochemistry7010007.

    Article  Google Scholar 

  12. M. A. Shamsutdinov, V. N. Nazarov, and A. T. Kharisov, Introduction to the Theory of Domain Walls and Solitons in Ferromagnets (Bashkir State University, Ufa, 2010) [in Russian].

    Google Scholar 

  13. W. F. Brown, Micromagnetics (Interscience Publisher, New York, 1963).

    MATH  Google Scholar 

  14. R. Tickle and R. D. James, “Magnetic and Magnetomechanical Properties of Ni2MnGa," J. Magnet. Magnet. Materials 195, 627–638 (1999). DOI: 10.1016/S0304-8853(99)00292-9.

    Article  ADS  Google Scholar 

  15. J. X. Zhang and L. Q. Chen, “Phase-Field Microelasticity Theory and Micromagnetic Simulations of Domain Structures in Giant Magnetostrictive Materials," Acta Materialia 53, 2845–2855 (2005). DOI: 10.1016/j.actamat.2005.03.002.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Rogovoi.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 5, pp. 195-207. https://doi.org/10.15372/PMTF20210519.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogovoi, A.A., Stolbova, O.S. & Stolbov, O.V. NUMERICAL SIMULATION OF EVOLUTION OF MAGNETIC MICROSTRUCTURE IN HEUSLER ALLOYS. J Appl Mech Tech Phy 62, 870–881 (2021). https://doi.org/10.1134/S0021894421050199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421050199

Keywords

Navigation