Skip to main content
Log in

VARIATIONAL FORMULATION OF COUPLED HYDRODYNAMIC PROBLEMS

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A method is proposed for constructing variational models of continuous media for reversible and irreversible processes based on the generalized Hamilton–Ostrogradskii principle, which reduces to the principle of stationarity for a non-integrable variational form of a spatial-temporal continuum. For dissipative processes, the corresponding linear variational form is constructed as a sum of variation of the Lagrangian of the reversible part and a linear combination of dissipation channels of physically nonlinear processes. Examples of using the variational approach to the description of hydrodynamic models are considered. The corresponding variational models of the Darcy hydrodynamics, linear Navier–Stokes hydrodynamics, Brinkman hydrodynamics, gradient hydrodynamics, and some generalization of the classical nonlinear Navier–Stokes hydrodynamics are constructed. For modeling irreversible processes of hydrodynamics with allowance for coupling of deformation with the associated physical processes of heat transfer, it is proposed to use variational formalism for the spatial-temporal continuum, where the spatial and temporal processes are considered simultaneously and consistently because the normalized time is a coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. N. Matveenko and E. A. Kirsanov, “Viscosity and Structure of Disperse Systems," Vestn. Mosk. Univ., Ser. 2, Khimiya 66 (4), 243–276 (2011).

    Google Scholar 

  2. Al. A. Kovtun, “On Equations of the Biot Model and their Modification," Vopr. Geofiz. 44 (4), 3–25 (2011).

    Google Scholar 

  3. M. A. Biot, “Mechanics of Deformation and Acoustic Propagation in Porous Media," J. Appl. Phys. 33, 1482–1498 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Kaya and J. Goldak, “Numerical Analysis of Heat and Mass Transfer in the Capillary Structure of a Loop Heat Pipe," Intern. J. Heat Mass Transfer 49, 3211–3220 (2006).

    Article  Google Scholar 

  5. R. Sonar, S. Hardman, J. Pell, et al., “Transient Thermal and Hydrodynamic Model of Flat Heat Pipe for the Cooling of Electronics Components," Intern. J. Heat Mass Transfer 51, 6006–6017 (2008).

    Article  Google Scholar 

  6. S. Storring, “Design and Manufacturing of Loop Heat Pipes for Electronics Cooling," Diss. Ottawa: Carleton Univ., 2006.

  7. B. D. Annin and S. N. Korobeinikov, “Admissible Forms of Elastic Laws of Deformation in the Governing Relations of Elastoplasticity," Sib. Zh. Industr. Mat. 1 (1), 21–34 (1998).

    MathSciNet  Google Scholar 

  8. B. R. Babin, G. P. Peterson, and D. Wu, “Steady-State Modeling and Testing of Micro Heat Pipe," J. Heat Transfer 112, 595–601 (1990).

    Article  ADS  Google Scholar 

  9. H. Darcy, Les Fontaines Publiques de la Ville de Dijon (Dalmont, Paris, 1856).

    Google Scholar 

  10. F. Lefevre and M. Lallemand, “Coupled Thermal and Hydrodynamic Models of Flat Micro Heat Pipes for the Cooling of Multiple Electronic Components," Intern. J. Heat Mass Transfer 49, 1375–1383 (2006).

    Article  Google Scholar 

  11. B. Sieder, V. Sartre, and F. Lefevre, “Literature Review: Steady-State Modelling of Loop Heat Pipe," Appl. Thermal Engng. 75, 709–723 (2015).

    Article  Google Scholar 

  12. V. V. Pukhnachev, “Viscous Flows in Domains with a Multiply Connected Boundary," in New Directions in Mathematical Fluid Mechanics (Birkhauser Verlag, Basel, 2010). P. 333–348.

  13. V. V. Pukhnachev, “Symmetries in the Navier–Stokes equations," Usp. Mekh., No. 6, 3–76 (2006).

    Google Scholar 

  14. P. A. Belov and S. A. Lurie, “On Variation Models of the Irreversible Processes in Mechanics of Solids and Generalized Hydrodynamics Lobachevskii," J. Math. 40 (7), 896–910 (2019).

    Article  MathSciNet  Google Scholar 

  15. P. A. Belov, H. Altenbach, S. A. Lurie, et al., “Generalized Brinkman-Type Fluid Model and Coupled Heat Conductivity Problem," Lobachevskii J. Math. 42 (8), 1786–1799 (2021).

    Article  MathSciNet  Google Scholar 

  16. D. D. Joseph and L. Preziosi, “Heat Waves," Rev. Modern Phys. 61, 41–73 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Lepri, R. Livi, and A. Politi, “Thermal Conduction in Classical Low-Dimensional Lattices," Phys. Rep. 377, 1–80 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Dhar, “Heat Transport in Low-Dimensional Systems," Adv. Phys. 57, 457 (2008).

    Article  ADS  Google Scholar 

  19. Moran Wang, Bin-Yang Cao, and Zeng-Yuan Guo, “General Heat Conduction Equations Based on the Thermomass Theory," Frontiers Heat Mass Transfer 1, 013004 (2010).

    Google Scholar 

  20. S. L. Sobolev, “Transport Processes and Travelling Waves in Locally Nonequilibrium Systems," Usp. Fiz. Nauk 161 (3), 5–29 (1991).

    Article  Google Scholar 

  21. S. L. Sobolev, “Rapid Phase Transformation under Local Non-Equilibrium Diffusion Conditions," Materials Sci. Technol. 31 (13), 1607–1617 (2015).

    Article  Google Scholar 

  22. S. Lurie and P. Belov, “From Generalized Theories of Media with Fields of Defects to Closed Variational Models of the Coupled Gradient Thermoelasticity and Thermal Conductivity," Adv. Structured Materials 120, 135–154 (2019).

    Article  Google Scholar 

  23. S. A. Lurie and P. A. Belov, “Theory of Space-Time Dissipative Elasticity and Scale Effects," NanoMMTA 2, 166–178 (2013).

    MATH  Google Scholar 

  24. S. A. Lurie and P. A. Belov, “On the Nature of the Relaxation Time, the Maxwell — Cattaneo and Fourier Law in the Thermodynamics of a Continuous Medium, and the Scale Effects in Thermal Conductivity," Continuum Mech. Thermodynamics 32, 709–728 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  25. P. A. Belov, A. G. Gorshkov, and S. A. Lurie, “Variational Model of Nonholonomic 4D Media," Izd. Ross. Akad. Nauk, Mekh. Tverd. Tela 6, 29–46 (2006).

    Google Scholar 

  26. P. A. Belov and S. A. Lurie, “Ideal Asymmetric 4D Medium as a Model of Reversible Dynamic Thermoelasticity," Izd. Ross. Akad. Nauk, Mekh. Tverd. Tela 52, 243–276 (2011).

    Google Scholar 

  27. L. I. Sedov, “Mathematical Methods of Constructing New Models of Continuous Media," Usp. Mat. Nauk 20 (5), 121–180 (1965).

    MathSciNet  MATH  Google Scholar 

  28. C. Lanczos, The Variational Principles of Mechanics (Toronto, 1962).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lurie.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 5, pp. 145-160. https://doi.org/10.15372/PMTF20210515.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lurie, S.A., Belov, P.A. VARIATIONAL FORMULATION OF COUPLED HYDRODYNAMIC PROBLEMS. J Appl Mech Tech Phy 62, 828–841 (2021). https://doi.org/10.1134/S0021894421050151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421050151

Keywords

Navigation