Skip to main content
Log in

NUMERICAL MODELING OF GAS HYDRATE FORMATION IN A POROUS COLLECTOR

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper describes a mathematical model and features of gas hydrate formation during the injection of natural gas with a given composition into a porous reservoir containing the same gas and water in the initial state. Numerical solutions of the axisymmetric problem are constructed, which describe the distributions of the main parameters in the reservoir both with the frontal surface and with the volumetric region of phase transitions. The influence of the parameters of the injected gas and porous medium on the mode and rate of gas hydrate formation is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. F. A. Kuznetsov, V. A. Istomin, and T. V. Rodionova, “Gas Hydrates: a Historical Digression, Current State, and Research Prospects," Rossiiskii Khimicheskii Zhurnal 47 (3), 5–18 (2003).

    Google Scholar 

  2. Y. F. Makogon, “Natural Gas Hydrates: A Promising Source of Energy," J. Natur. Gas Sci. Engng. 2 (1), 49–59 (2010). DOI: 10.1016/j.jngse.2009.12.004.

    Article  Google Scholar 

  3. E. A. Bondarev, I. I. Rozhin, V. V. Popov, and K. K. Argunova, “Underground Storage of Natural Gas in Hydrate State: Primary Injection Stage," J. Engng Thermophys. 27 (2), 221–232 (2018). DOI: 10.1134/S181023281802008X.

    Article  Google Scholar 

  4. H. P. Veluswamy, A. Kumar, Y. Seo, et al., “A Review of Solidified Natural Gas (SNG) Technology for Gas Storage via Clathrate Hydrates," Appl. Energy 216, 262–285 (2018). DOI: 10.1016/j.apenergy.2018.02.059.

    Article  Google Scholar 

  5. A. D. Duchkov, L. S. Sokolova, D. E. Ayunov, and M. E. Permyakov, “Estimating the Possibility of Carbon Dioxide Storage in the Cryolithozone of Western Siberia," Kriosfera Zemli 13 (4), 62–68 (2009).

    Google Scholar 

  6. A. G. Zavodovsky, M. Sh. Madygulov, and A. M. Reshetnikov, “Kinetics Growth of Gas Hydrate of Freon-12 During Thermal Cycling of Sample," Kriosfera Zemli 21 (5), 55–62 (2017) [Earth’s Cryosphere 21 (5), 46–52 (2017)]. DOI: 10.21782/KZ1560-7496-2017-5(55-62).

    Article  Google Scholar 

  7. V. A. Kazaryan, Underground Storage of Gases and Liquids (Izhevsk Institute of Computer Science, Izhevsk; Moscow, 2006) [in Russian].

  8. E. A. Bondarev, I. I. Rozhin, V. V. Popov, and K. K. Argunova, “Assessment of Possibility of Natural Gas Hydrates Underground Storage in Permafrost Regions," Kriosfera Zemli 19 (4), 64–74 (2015) [Earth’s Cryosphere 19 (4), 58–67 (2015)].

    Google Scholar 

  9. V. Sh. Shagapov and N. G. Musakaev, Dynamics of Formation and Decomposition of Hydrates in Gas Production, Transportation, and Storage Systems (Nauka, Moscow, 2016) [in Russian].

    Google Scholar 

  10. G. G. Tsypkin, Flows with Phase Transitions in Porous Media (Fizmatlit, Moscow, 2009) [in Russian].

    MATH  Google Scholar 

  11. O.R. Nurislamov and V. Sh. Shagapov, “Gas Injection into a Moist Porous Medium with the Formation of a Gas Hydrate," Prikladnaya Matematika I Mekhanika 76 (5), 809–823 (2009) [J. Appl. Math. Mech. 73 (5), 581–591 (2009)]. DOI: 10.1016/j.jappmathmech.2009.11.011.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Sh. Shagapov, M. K. Khasanov, I. K. Gimaltdinov, and M. V. Stolpovskii, “Numerical Modeling of Formation of a Gas Hydrate in a Finite-Length Porous Bed Purged by a Gas," Prikl. Mekh. Tekh. Fiz. 52 (4), 116–126 (2011) [Journal of Applied Mechanics and Technical Physics 52 (4), 599–607 (2011)].

    Article  ADS  Google Scholar 

  13. V. Sh. Shagapov, N. G. Musakaev, and M. K. Khasanov, “Formation of Gas Hydrates in a Porous Medium During an Injection of Cold Gas," Intern. J. Heat Mass Transfer 84, 1030–1039 (2015). DOI: 10.1016/j.ijheatmasstransfer.2015.01.105.

    Article  Google Scholar 

  14. M. K. Khasanov, “Investigation of Regimes of Gas Hydrate Formation in a Porous Medium, Partially Saturated with Ice," Teplofizika I Aeromekhanika 22 (2), 255–266 (2015) [Thermophysics and Aeromechanics 22 (2), 245–255 (2015)]. DOI: 10.1134/S0869864315020109.

    Article  ADS  Google Scholar 

  15. V. Sh. Shagapov, A. S. Chiglintseva, and O. A. Shepelkevich, “Numerical Simulation of Hydrate Formation on Injection of Cold Gas in a Snow Massif," Matematicheskoe Modelirovanie 31 (1), 63–84 (2019) [Mathematical Models and Computer Simulations 11 (5), 690–703 (2019)]. DOI: 10.1134/S0234087919010040.

    Article  Google Scholar 

  16. N. G. Musakaev and M. K. Khasanov, “Solution of the Problem of Natural Gas Storages Creating in Gas Hydrate State in Porous Reservoirs," Mathematics 8 (1), 36 (2020). DOI: 10.3390/math8010036.

    Article  Google Scholar 

  17. M. K. Khasanov and N. G. Musakaev, “The Conditions for the Existence of an Extended Region of Gas Hydrate Formation in a Porous Medium," Lobachevskii J. Math. 41 (7), 1222–1227 (2020). DOI: 10.1134/S1995080220070203.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. S. Basniev, I. N. Kochina, and V. M. Maksimov, Underground Fluid Mechanics (Nedra, Moscow, 1993) [in Russian].

    Google Scholar 

  19. R. I. Nigmatulin, Dynamics of Multiphase Media (CRC Press, 1990).

    Google Scholar 

  20. N. G. Musakaev, S. L. Borodin, and A. A. Gubaidullin, “Methodology for the Numerical Study of the Methane Hydrate Formation During Gas Injection into a Porous Medium," Lobachevskii J. Math. 41 (7), 1272–1277 (2020). DOI: 10.1134/S199508022007032X.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. R. Gurevich and A. I. Brusilovskii, Reference Manual for Calculating the Phase State and Properties of Gas Condensate Mixtures (Nedra, Moscow, 1984) [in Russian].

    Google Scholar 

  22. S. Sh. Byk, Yu. F. Makogon, and B. I. Fomina, Gas Hydrates (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  23. V. A. Istomin and V. S. Yakushev, Gas Hydrates Under Natural Conditions (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 

  24. S. Y. Misyura and I. G. Donskoy, “Dissociation Kinetics of Methane Hydrate and CO2 Hydrate for Different Granular Composition," Fuel 262, 116614 (2020). DOI: 10.1016/j.fuel.2019.116614.

    Article  Google Scholar 

  25. N. G. Musakaev and S. L. Borodin, “To the Question of the Interpolation of the Phase Equilibrium Curves for the Hydrates of Methane and Carbon Dioxide," MATEC Web Conf. 115, 05002 (2017). DOI: 10.1051/matecconf/201711505002.

    Article  Google Scholar 

  26. A. V. Meleshkin, M. V. Bartashevich, and V. V. Glezer, “Hydrate Formation in Water Foam Volume," J. Engng Thermophys. 29 (2), 279–284 (2020). DOI: 10.1134/S1810232820020101.

    Article  Google Scholar 

  27. V. Sh. Shagapov, R. R. Urazov, and N. G. Musakaev, “Dynamics of Formation and Dissociation of Gas Hydrates in Pipelines at the Various Modes of Gas Transportation," Heat Mass Transfer 48 (9), 1589–1600 (2012). DOI: 10.1007/s00231-012-1000-3.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Musakaev.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 4, pp. 57-67. https://doi.org/10.15372/PMTF20210406.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musakaev, N.G., Borodin, S.L. & Khasanov, M.K. NUMERICAL MODELING OF GAS HYDRATE FORMATION IN A POROUS COLLECTOR. J Appl Mech Tech Phy 62, 573–582 (2021). https://doi.org/10.1134/S0021894421040064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421040064

Keywords

Navigation