Skip to main content
Log in

ON THE THEORY OF LOCAL SOUNDING OF HYDRAULIC FRACTURES USING PULSED PRESSURE WAVES

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The paper considers the evolution of a pulse signal in the annular gap between a diagnostic probe and an open well in a low-permeability fractured formation. Fractures are located along the well, and the well and the fractured porous medium are filled with the same acoustically compressible fluid. The problem is solved numerically using the fast Fourier transform. Dispersion equations are obtained that describe the propagation of damped traveling waves in the gap taking into account fluid filtration through longitudinal fractures. An analyzed is made of the influence of the filtration characteristics of the reservoir and hydraulic fractures and the width of the gap between the probe body and the borehole wall on the phase velocity, the attenuation coefficient, and the evolution of pulse signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. V. F. Piven, “Two-Dimensional Filtration in Layers of Varying Conductivity Modeled by a Harmonic Function of Coordinates," Izv. Ross. Akad. Nauk. Mekh. Zhidk. Gaza, N 3, 102–112 (1995).

    Google Scholar 

  2. R. D. Kanevskaya, Mathematical Modeling of Oil and Gas Field Development using Hydraulic Fracturing (Nedra, Moscow, 1999) [in Russian].

    Google Scholar 

  3. M. R. Mavlyutov, V. F. Galiakbarov, V. B. Shtur, V. V. Prokshin, and M. I. Kuznetsov, “Method of Treatment of Oil Reservoirs," Author’s Certificate1373023 SU, IPC E 21 B 43/25, A1, No. 3826843/03; Appl. 19.12.1984.. Publ. 20.08.2000.

  4. V. F. Galiakbarov, R. Kh. Sannikov, M. R. Mavlyutov, R. R. Gilyazetdinov, F. M. Kazyrbaev, and R. S. Tukaev, “Hydrodynamic Pressure Pulsator," Author’s Certificate 1538587 SU, IPC E 21 B 43/00 A2, No. 4263290/03; Appl. 23.03.1987. Publ. 27.08.2000.

  5. V. F. Galiakbarov, E. V. Galiakbarova, K. M. Mustafin, S. G. Zubairov, and B. A. Yakhin, “A Device for Processing the Bottomhole Formation Zone," RU Pat. 164573, IPC E 21 B 43/11 U1., No. 2016110939/03; Appl. 03.24.2016. 10.09.2016.

  6. M. B. Brodskii, V. F. Galiakbarov, E. V. Galiakbarova, K. M. Mustafin, and B. A. Yakhin, “Device for Formation Fluid Triggering Off and Well Treatment," RU Pat. 2640226, IPC E 21 B 43/25, 43/18, 5/42 C1, No. 2016125619; Appl. 27.06.2016. Publ. 27.12.2017.

  7. Yu. P. Zheltov and S. A. Khristianovich, “On Hydraulic Fracturing of an Oil Reservoir," Izv. Akad.Nauk SSSR. Otdel. Tekhn. Nauk, No. 5, 3–41 (1955).

    Google Scholar 

  8. I. A. Chernyi, Underground Fluid Dynamics (Gostoptekhizdat, Moscow, 1948) [in Russian].

    Google Scholar 

  9. G. I. Barenblatt, V. M. Entov, and M. V. Ryzhik, Motion of Liquids and Gases in Natural Formations (Nedra, Moscow, 1984) [in Russian].

    Google Scholar 

  10. H. Cinco-Ley and V. F. Samaniego, “Transient Pressure Analysis for Fractured Wells," J. Petroleum Technol. 33 (9), 1749–1766 (1981).

    Article  Google Scholar 

  11. V. Sh. Shagapov and Z. M. Nagaeva, “On the Theory of Seepage Waves of Pressure in a Fracture in a Porous Permeable Medium," Prikl. Mekh. Tekh. Fiz. 58 (5), 121–130 (2017) [J. Appl. Mech. Tech. Phys. 58 (5), 862–870 (2017); https://doi.org/10.1134/S0021894417050121].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. V. Sh. Shagapov and Z. M. Nagaeva, “Harmonic Pressure Waves in Fractures Occurring in Oil and Gas Strata," Inz.-Fiz. Zhurn. 90 (5), 1109–1117 (2017) [J. Eng. Phys. Thermophys. 90 (5), 1053–1060 (2017); https://doi.org/10.1007/s10891-017-1656-0].

    Article  Google Scholar 

  13. I. L. Khabibullin and A. A. Khisamov, “On the Theory of Bilinear Filtration in Hydraulically Fractured Reservoirs," Vestn. Bash. Gos. Univ. 23 (4), 958–963 (2018).

    Article  Google Scholar 

  14. Q. Feng, T. Xia, S. Wang, and H. Singh, “Pressure Transient Behavior of Horizontal Well with Time-Dependent Fracture Conductivity in Tight Oil Reservoirs," Geofluids 2017, 5279792 (2017); DOI: 10.1155/2017/5279792.

    Article  Google Scholar 

  15. Z. A. Bulatov, D. A. Gumerova, and V. Sh. Shagapov, “Evolution of Acoustic Waves in Channels with Permeable-Wall Regions in an Inhomogeneous Porous Medium," Akust. Zhurn. 48 (3), 300–308 (2002) [Acoust. Phys. 48 (3), 254–262 (2002); https://doi.org/10.1134/1.1478107].

    Article  ADS  Google Scholar 

  16. V. Sh. Shagapov and Z. A. Bulatova, “On the Theory of Local Acoustic Probing of Borehole Zones in Rocks," Prikl. Mekh. Tekh. Fiz. 43 (6), 142–150 (2002) [J. Appl. Mech. Tech. Phys. 43 (6), 902–909 (2002); https://doi.org/10.1023/A:1020724822921].

    Article  MATH  Google Scholar 

  17. G. A. Maksimov and A. V. Radchenko, “Modeling of the Intensification of Oil Production by an Acoustic Action on the Oil Pool from the Borehole," Akust. Zhurn. 51, 118–131 (2005) [Acoust. Phys. 51, S102–S114 (2005); https://doi.org/10.1134/1.2133958].

    Article  ADS  Google Scholar 

  18. A. A. Gubaidullin and O. Yu. Boldyreva, “Waves in a Cylindrical Cavity in a Fluid-Saturated Porous Medium," Vestn. Nizhegor. Univ., No. 4-3, 738–739 (2011).

    Google Scholar 

  19. D. J. Hill, M. McEwan-King, and P. Tindall, “Hydraulic Fracturing Monitoring," Pat. 2537419, IPC E 21 B 43/26 C2, No. 2011153423/03; Appl27.05.2010. Publ. 10.01.2015.

  20. V. Sh. Shagapov, E. V. Galiakbarova, and Z. R. Khakimova, “On the Theory of Acoustic Scanning of Pipelines with Damaged Sections," Tr. Inst. Mekhaniki im. R. R. Mavlyutova 11 (2), 180–188 (2016).

    Google Scholar 

  21. V. Sh. Shagapov, E. V. Galiakbarova, I. G. Khusainov, and Z. R. Khakimova, “Acoustic Scanning of Damaged Pipelines in Soil," Prikl. Mekh. Tekh. Fiz. 59 (4), 169–178 (2018) [J. Appl. Mech. Tech. Phys. 59 (4), 724–732 (2018); https://doi.org/10.1134/S002189441804020X].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M. A. Isakovich, General Acoustics (Nauka, Moscow, 1973).

    Google Scholar 

  23. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  24. V. A. Efimov, Mathematical Analysis (Special Sections). (Vysh. Shk., Moscow, 1980). Ch. 1 [in Russian].

    Google Scholar 

  25. A. A. Gubaidullin and O. Yu. Boldyreva, “Computer Modeling of Wave Processes in Porous Media," Vestn. Kibernetiki, No. 2, 103–111 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Galiakbarova.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 4, pp. 46-56. https://doi.org/10.15372/PMTF20210405.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shagapov, V.S., Galiakbarova, E.V. & Khakimova, Z.R. ON THE THEORY OF LOCAL SOUNDING OF HYDRAULIC FRACTURES USING PULSED PRESSURE WAVES. J Appl Mech Tech Phy 62, 563–572 (2021). https://doi.org/10.1134/S0021894421040052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421040052

Keywords

Navigation