Skip to main content
Log in

NUMERICAL SIMULATION OF THE INFLAMMATORY PHASE OF MYOCARDIAL INFARCTION

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The dynamics of death of cardiac muscle cells in the acute phase of myocardial infarction is studied numerically. The problem is considered in local and spatially distributed formulations. The adequacy of the mathematical model is confirmed by the quantitative agreement between the results of numerical solution of the problem and experimental data. The adopted models are used to investigate the trigger mechanism of transition from a favorable scenario for the development of acute myocardial infarction to a scenario with a rapid increase in the level of myocardial damage on the third–fifth day of myocardial infarction. For these scenarios of the development of myocardial infarction, the process of demarcating inflammation is investigated. The results of the studies, including evaluations of the effectiveness of anti-inflammatory cytokine therapeutic strategies, are consistent with available data of laboratory studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. K. Thygesen, J. S. Alpert, A. S. Jaffe, et al., “Fourth Universal Definition of Myocardial Infarction (2018)," Circulation. 138 (20), e618–e651 (2018).

    Article  Google Scholar 

  2. A. A. Yarilin, Immunology: Textbook (Geotar-Media, Moscow, 2010) [in Russian].

    Google Scholar 

  3. A. Saxena, I. Russo, and N. G. Frangogiannis, “Inflammation as a Therapeutic Target in Myocardial Infarction: Learning from Past Failures to Meet Future Challenges," Translat. Res. 167 (1), 152–166 (2016).

    Article  Google Scholar 

  4. L. M. Nepomnyashikh, E. L. Lushnikova, and D. E. Semenov, Regenerative and Plastic Insufficiency of the Heart. Morphological Bases and Molecular Mechanisms (Publishing House RAMS, Moscow, 20030) [in Russian].

    Google Scholar 

  5. O. F. Voropaeva and Yu. I. Shokin, “Numerical Simulation in Medicine: Some Formulations of Problems and Calculation Results," Vychisl. Tekhnol. 17 (4), 29–55 (2012).

    Google Scholar 

  6. O. F. Voropaeva and C. A. Tsgoev, “A Numerical Model of Inflammation Dynamics in the Core of Myocardial Infarction," J. Appl. Industr. Math. 13 (2), 372–383 (2019).

    Article  MathSciNet  Google Scholar 

  7. C. A. Tsgoev, O. F. Voropaeva, and Yu. I. Shokin, “Mathematical Modelling of Acute Phase of Myocardial Infarction," Russ. J. Numer. Anal. Math. Modelling 35 (2), 111–126 (2020).

    Article  MathSciNet  Google Scholar 

  8. R. H. Anderson, S. Y. Ho, K. Redmann, et al., “The Anatomical Arrangement of the Myocardial Cells Making up the Ventricular Mass," Europ. J. Cardio-Thoracic Surgery 28, 517–525 (2005).

    Article  Google Scholar 

  9. Z. A. Gouda, Y. H. A. Elewa, and A. O. Selim, “Histological Architecture of Cardiac Myofibers Composing the Left Ventricle of Murine Heart," J. Histology Histopathology 2Article 2 (2015).

  10. G. J. Strijkers, A. Bouts, W. M. Blankesteijn, et al., “Diffusion Tensor Imaging of Left Ventricular Remodeling in Response to Myocardial Infarction in the Mouse," NMR Biomedicine. 22, 182–190 (2009).

    Article  Google Scholar 

  11. Y.-F. Jin, H.-C. Han, J. Berger, et al., “Combining Experimental and Mathematical Modeling to Reveal Mechanisms of Macrophage-Dependent Left Ventricular Remodeling," BMC Systems Biology. 5, 60 (2011).

    Article  Google Scholar 

  12. Y. Wang, T. Yang, Y. Ma, et al., “Mathematical Modeling and Stability Analysis of Macrophage Activation in Left Ventricular Remodeling Post-Myocardial Infarction," BMC Genomics. 13, S21 (2012).

    Article  Google Scholar 

  13. P.-C. Lin, U. Kreutzer, and T. Jue, “Anisotropy and Temperature Dependence of Myoglobin Translational Diffusion in Myocardium: Implication for Oxygen Transport and Cellular Architecture," Biophys. J. 92, 2608–2620 (2007).

    Article  ADS  Google Scholar 

  14. A. Saxena, M. Bujak, O. Frunza, et al., “CXCR3-Independent Actions of the CXC Chemokine CXCL10 in the Infarcted Myocardium and in Isolated Cardiac Fibroblasts are Mediated through Proteoglycans," Cardiovascular Res. 103, 217–227 (2014).

    Article  Google Scholar 

  15. M. Bujak, M. Dobaczewski, K. Chatila, et al., “Interleukin-1 Receptor Type I Signaling Critically Regulates Infarct Healing and Cardiac Remodeling," Amer. J. Pathol. 173, 57–67 (2008).

    Article  Google Scholar 

  16. V.-L. Zuylen, M. Haan, H. Roelofs, et al., “Myocardial Infarction Models in NOD/Scid Mice for Cell Therapy Research: Permanent Ischemia vs Ischemia—Reperfusion," SpringerPlus 4, 336 (2015).

    Article  Google Scholar 

  17. E. W. Hsu, R. Xue, A. Holmes, and J. R. Forder, “Delayed Reduction of Tissue Water Diffusion after Myocardial Ischemia," Amer. J. Physiol. 275, H697–H702 (1998).

    Article  Google Scholar 

  18. N. Beyhoff, D. Lohr, A. Foryst-Ludwig, et al., “Characterization of Myocardial Microstructure and Function in an Experimental Model of Isolated\Subendocardial Damage," Hypertension, 74, 295–304 (2019).

    Article  Google Scholar 

  19. N. N. Yanenko,  Fractional Step Method for Solving Multidimensional Problems of Mathematical Physics (Nauka, Novosibirsk, 1967) [in Russian].

    MATH  Google Scholar 

  20. V. A. Chereshnev and E. Yu. Gusev, “Immunological and Pathophysiological Mechanisms of Systemic Inflammation," Med. Immunol. 14 (1/2), 9–20 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. F. Voropaeva.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 3, pp. 105-117. https://doi.org/10.15372/PMTF20210310.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voropaeva, O.F., Tsgoev, C.A. & Shokin, Y.I. NUMERICAL SIMULATION OF THE INFLAMMATORY PHASE OF MYOCARDIAL INFARCTION. J Appl Mech Tech Phy 62, 441–450 (2021). https://doi.org/10.1134/S002189442103010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189442103010X

Keywords

Navigation