Skip to main content
Log in

CONTROL OF GAS-PHASE HIGH-TEMPERATURE SYNTHESIS OF TITANIUM DIOXIDE NANOPARTICLES IN A PLASMA-CHEMICAL REACTOR WITH THE USE OF A QUENCHING JET

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The influence of a quenching air jet on physical and chemical properties and morphology of titanium dioxide, silicon dioxide, and TiO2–SiO2 composite particles synthesized by the one-stage chloride method in a flow-type plasma-chemical reactor is studied. The results of the simulations and analysis of the samples show that the physical and chemical properties of the powder and the morphology of its particles can be controlled. It is demonstrated that the results of mathematical simulations of the synthesis of TiO2 and SiO2 particles agree well with the experimental data obtained in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. S. M. Aulchenko, A. F. Latypov, and N. N. Yanenko, “Application of the Projection Method for Constructing the Contour of a Body with the Minimum Drag," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2 108–113 (1985).

    Google Scholar 

  2. S. M. Aulchenko, “Control of the Growth of Titanium Dioxide Nanoparticles in a Plasma-Chemical Flow Reactor," Inzh.-Fiz. Zh. 86 (5), 967–973 (2013).

    Google Scholar 

  3. E. V. Kartaev, V. P. Lukashov, S. P. Vashenko, et al., “An Experimental Study of the Synthesis of Ultrafine Titania Powder in Plasmachemical Flow-Type Reactor," Intern. J. Chem. Reactor Engng. 12 (1), 1–20 (2014). DOI: 10.1515/ijcre-2014-0001.

    Article  Google Scholar 

  4. E. V. Kartaev, S. M. Aulchenko, and V. A. Emelkin, “Experimental and Numerical Study of High-Temperature Synthesis of Nanosized Silica Particles in Flow-Type Plasmachemical Reactor," in Abstr. of the 14th Intern. Conf. “Gas discharge plasmas and their applications," Tomsk (Russia), September 15–21, 2019 (TPU Publ. House, Tomsk, 2019, P. 182).

  5. S. M. Aulchenko and E. V. Kartaev, “Modeling the One-Stage Synthesis of Composite Particles of the Nucleus–Shell Type in Separate Oxidation of Titanium and Silicon Tetrachlorides in a Plasmachemical Reactor," Inzh.-Fiz. Zh. 93 (1), 114–120 (2020) [J. Eng. Phys. Thermophys. 93, 108–113 (2020].

    Article  ADS  Google Scholar 

  6. S. M. Aulchenko and E. V. Kartaev, “Modeling of Synthesis of Composite “Core–Shell" Particles on the Basis of Joint Oxidation of Titanium and Silicon Tetrachlorides in a Plasma-Chemical Reactor," Prikl. Mekh. Tekh. Fiz. 61 (4), 77–83 (2020) [J. APpl. Mech. Tech. Phys. 61 (4), 566–572 (2020)].

    Article  ADS  MathSciNet  Google Scholar 

  7. A. M. El-Toni, S. Yin, and T. Sato, “Control of Silica Shell Thickness and Microporosity of Titania — Silica Core — Shell Type Nanoparticles to Depress the Photocatalytic Activity of Titania," J. Colloid Interface Sci. 300 (1), 123–130 (2006).

    Article  ADS  Google Scholar 

  8. I. A. Siddiquey, T. Furusawa, M. Sato, et al., “Control of the Photocatalytic Activity of TiO2 Nanoparticles by Silica Coating with Polydiethoxysiloxane," Dyes Pigments. 76 (3), 754–759 (2008).

    Article  Google Scholar 

  9. A. Teleki, B. Buesser, M. C. Heine, et al., “Role of Gas-Aerosol Mixing During in Situ Coating of Flame-Made Titania Particles," Industr. Engng Chem. Res. 48 (1), 85–92 (2009).

    Article  Google Scholar 

  10. B. Buesser and S. E. Pratsinis, “Design of Gas-Phase Synthesis of Core-Shell Particles by Computational Fluid — Aerosol Dynamics," AIChE J. 57 (11), 3132–3142 (2011).

    Article  Google Scholar 

  11. E. A. Grinyaeva, B. Sh. Kochkorov, D. V. Ponomarev, et al., “Plasma-Chemical Synthesis of Crystalline Nano-Sized Composite Oxides," Izv. Tom. Politekh. Univ., Ser. Khimiya, 317 (3), 33–37 (2010).

    Google Scholar 

  12. P. V. Grishin, V. E. Katnov, G. S. Stepin, et al., “Gas-Phase Synthesis of Composite Particles with the Core–Shell Structure on the Basis of Silicon (IV) and Zinc," Vestnik Kazan. Tekhnol. Univ., 19 (14), 56–60 (2016).

    Google Scholar 

  13. S. H. Ehrman, S. K. Friedlander, and M. R. Zachariah, “Characteristics of SiO2/TiO2 Nanocomposite Particles Formed in a Premixed Flat Flame," J. Aerosol Sci. 29 (5/6), 687–706 (1998).

    Article  ADS  Google Scholar 

  14. A. Kolesnikov and J. Kekana, “Nanopowders Production in the Plasmachemical Reactor: Modelling and Simulation," Intern. J. Chem. Reactor Engng. 9, Article A83 (2011).

  15. H. K. Park and K. Y. Park, “Control of Particle Morphology and Size in Vapor-Phase Synthesis of Titania, Silica and Alumina Nanoparticles," KONA Powder Particle J., No. 32, 85–101 (2015).

    Article  Google Scholar 

  16. T. G. Elizarova, Quasi-Gas-Dynamic Equations and Methods of Viscous Flow Calculation (Nauch. Mir, Moscow, 2007) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Aulchenko.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 3, pp. 80-90. https://doi.org/10.15372/PMTF20210308.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aulchenko, S.M., Kartaev, E.V. CONTROL OF GAS-PHASE HIGH-TEMPERATURE SYNTHESIS OF TITANIUM DIOXIDE NANOPARTICLES IN A PLASMA-CHEMICAL REACTOR WITH THE USE OF A QUENCHING JET. J Appl Mech Tech Phy 62, 419–428 (2021). https://doi.org/10.1134/S0021894421030081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421030081

Keywords

Navigation