Skip to main content
Log in

MODIFICATION AND VERIFICATION OF NUMERICAL ALGORITHMS FOR DAM-BREAK FLOW OVER A HORIZONTAL BED

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Numerical simulation of dam-break water flow over a horizontal dry bed has been performed. We have modified and verified computational techniques, including methods for determining the position of the interface and the continuum model for the surface tension force implemented in the PIFI code, as well as the OpenFOAM software with the interFoam solver and various cases of the two-parameter (\(k{-}\varepsilon\)) model with corrections made taking into account the behavior of flows in regions of low Reynolds numbers. Calculated integral characteristics of dam-break flow were analyzed and compared with measured data. It is shown that taking into account surface tension and using an adequate turbulence model leads to deceleration of water flow and hence to a decrease in the velocity of the wave front, resulting in better agreement between the results of calculations and laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. S. Hibberd and D. H. Peregrine, “Surf and Run-up on a Beach: A Uniform Bore," J. Fluid Mech. 95, 323–345 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  2. C. E. Synolakis, “The Runup of Solitary Waves," J. Fluid Mech.185, 523–545 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  3. C. Lin, M. J. Kao, W. Y. Wong, et al., “Effect of Leading Waves on Velocity Distribution of Undular Bore Traveling over Sloping Bottom," Europ. J. Mech. B. Fluids 73, 75–99 (2019).

    Article  ADS  Google Scholar 

  4. C. Lin, M. J. Kao, G. W. Tzeng, et al., “Study on Flow Fields of Boundary-Layer Separation and Hydraulic Jump During Rundown Motion of Shoaling Solitary Wave," J. Earthquake Tsunami 9, 1540002-1–1540002-33 (2015).

    Article  Google Scholar 

  5. J. C. Martin and W. J. Moyce, “An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane," Philos. Trans. Roy. Soc. London. Ser. A 224, 312–324 (1952).

    ADS  Google Scholar 

  6. G. Lauber and W. H. Hager, “Experiments to Dambreak Wave: Horizontal Channel," J. Hydraul. Res. 36, 291–307 (1998).

    Article  Google Scholar 

  7. C. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries," J. Comput. Phys. 39, 201–225 (1981).

    Article  ADS  Google Scholar 

  8. F. J. Kelecy and R. H. Pletcher, “The Development of a Free Surface Capturing Approach for Multi-Dimensional Free Surface Flows in Closed Containers," J. Comput. Phys. 138, 939–980 (1997).

    Article  ADS  Google Scholar 

  9. T. Shigemastu, P. L. F. Liu, and K. Oda, “Numerical Modeling of the Initial Stages of Dam-Breaking Waves," J. Hydraul. Res.42, 183–195 (2004).

    Article  Google Scholar 

  10. P. D. Hieu, T. Katsuoshi, and V. T. Ca, “Numerical Simulation of Breaking Waves Using a Two-Phase Flow Model," Appl. Math. Modelling 28, 983–1005 (2004).

    Article  Google Scholar 

  11. S. N. Yakovenko and K. C. Chang, “Volume Fraction Flux Approximation in a Two-Fluid Flow," Teplofiz. Aeromekh.15 (2), 181–199 (2008) [Thermophys. Aeromech.15 (2), 169–86 (2008)].

    Article  ADS  Google Scholar 

  12. H. H. Yeh and K. M. Mok, “On Turbulence in Bores," Phys. Fluids A 2, 821–828 (1990).

    Article  ADS  Google Scholar 

  13. P. K. Stansby, A. Chegini, and T. C. D. Barnes, “The Initial Stages of Dam-Break Flow," J. Fluid Mech. 374, 407–424 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  14. H. H. Yeh, A. Ghazali, and I. Marton, “Experimental Study of Bore Run-Up," J. Fluid Mech. 206, 563–578 (1989).

    Article  ADS  Google Scholar 

  15. Q. Zhang and P. L. F. Liu, “A Numerical Study of Swash Flows Generated by Bores," Coastal Engng. 55, 1113–1134 (2008).

    Article  Google Scholar 

  16. S. N. Yakovenko and K. C. Chang, “Application of a Continuum Model for the Surface Tension Force to the Rayleigh–Taylor Instability Problem," Teplofiz. Aeromekh. 18 (3), 449–461 (2011) [Thermophys. Aeromech. 18 (3), 433–445 (2011)].

    Article  ADS  Google Scholar 

  17. S. N. Yakovenko, “The Effects of Density Difference and Surface Tension on the Development of Rayleigh-Taylor Instability of an Interface between Fluid Media," Izv. Ross. Akad. Nauk. Mekh. Zhidk. Gaza, No. 6, 54–69 (2014) [Fluid Dynamics 49, 748–760 (2014)].

    Article  ADS  MathSciNet  Google Scholar 

  18. The OpenFOAM Foundation. OpenFOAM v7 user Guide, S. l, (2019). https://cfd.direct/openfoam/user-guide-v7/.

  19. P. G. Roach, Computational Fluid Dynamics(Hermosa, Albuquerque, 1972).

  20. R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow (Springer-Verl., Berlin, 1983).

  21. F. S. Lien, W. L. Chen, and M. A. Leschziner, “Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations," in Proc. of the 3rd Intern. Symp. on Engineering Turbulence Modelling and Measurements Heraklion (Greece), 27–29 May 1996 (Elsevier, Amsterdam, 1996), pp. 91–100.

  22. C. K. G. Lam and K. Bremhorst, “A Modified Form of the\(k{-}\varepsilon\)Model for Predicting Wall Turbulence," J. Fluid Engng.103 (3), 456–460 (1981).

    Google Scholar 

  23. A. Zh. Zhainakov and A. Y. Kurbanaliev, “Verification of the Open Package OpenFOAM on Dam Break Problems," Teplofiz. Aeromekh20 (4), 451–461 (2013) [Thermophys. Aeromech.20 (4), 461–472 (2013)].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Yakovenko.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 2, pp. 88–101.https://doi.org/10.15372/PMTF20210209.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evtushok, G.Y., Boiko, A.V., Yakovenko, S.N. et al. MODIFICATION AND VERIFICATION OF NUMERICAL ALGORITHMS FOR DAM-BREAK FLOW OVER A HORIZONTAL BED. J Appl Mech Tech Phy 62, 255–265 (2021). https://doi.org/10.1134/S0021894421020097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421020097

Keywords

Navigation