Skip to main content
Log in

Variational Multiscale Finite-Element Methods for a Nonlinear Convection–Diffusion–Reaction Equation

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper is devoted to developing finite-element methods for solving a two-dimensional boundary value problem for a singularly perturbed time-dependent convection–diffusion–reaction equation. The solution to this problem may vary rapidly in thin layers. As a result, spurious oscillations occur in the solution if the standard Galerkin method is used. In the multiscale finite-element methods, the original problem is split into the grid-scale and subgrid-scale problems, which allows capturing the problem features at a scale smaller than the element mesh size. In this study two methods are considered: the variational multiscale method with algebraic sub-scale approximation (VMM-ASA) and the residual-free bubbles (RFB) method. In the first method the subgrid-scale problem is simulated by the residual of the grid-scale equation and intrinsic time scales. In the second method the subgrid-scale problem is approximated by special functions. The grid-scale and subgrid-scale problems are formulated via the linearization procedure on the subgrid component applied to the original problem. The computer implementation of the methods was carried out using a commercial finite-element package. The efficiency of the developed methods is evaluated by solving a test boundary value problem for the nonlinear equation. Cases with different values of the diffusion coefficient have been analyzed. Based on the numerical investigation, it is shown that the multiscale methods enable improving the stability of the numerical solution and decreasing the quantity and the amplitude of oscillations compared to the standard Galerkin method. In the case of a small diffusion coefficient, the developed methods can yield a satisfactory numerical solution on a sufficiently coarse mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Аziz, Kh. and Settari, A., Petroleum Reservoir Simulation, London: Applied Science, 1979.

    Google Scholar 

  2. Kostina, A.A., Zhelnin, M.S., and Plekhov, O.A., Study of oil filtration in porous media under the steam-assisted gravity drainage process, Vestn. Perm. Nauch. Tsentra, 2018, no. 3, pp. 6–16. https://doi.org/10.7242/1998-2097/2018.3.1

  3. Vilarrasa, V., Olivella, S., Carrera, J., and Rutqvist, J., Long term impacts of cold CO2 injection on the caprock integrity, Int. J. Greenh. Gas Control, 2014, vol. 24, pp. 1–13. https://doi.org/10.1016/j.ijggc.2014.02.016

    Article  Google Scholar 

  4. Zhou, M.M. and Meschke, G., A three-phase thermo-hydro-mechanical finite element model for freezing soils, Int. J. Numer. Anal. Methods Geomech., 2013, vol. 37, pp. 3173–3193. https://doi.org/10.1002/nag.2184

    Article  Google Scholar 

  5. Vitel, M., Rouabhi, A., Tijani, M., and Guérin, F., Thermo-hydraulic modeling of artificial ground freezing: Application to an underground mine in fractured sandstone, Comput. Geotech., 2016, vol. 75, pp. 80–92. https://doi.org/10.1016/j.compgeo.2016.01.024

    Article  Google Scholar 

  6. Chen, W., Tan, X., Yu, H., Wu, G., and Jia, S., A fully coupled thermo-hydro-mechanical model for unsaturated porous media, J. Rock Mech. Geotech. Eng., 2009, vol. 1, pp. 31–40. https://doi.org/10.3724/SP.J.1235.2009.00031

    Article  Google Scholar 

  7. Lin, B., Chen, S., and Jin, Y., Evaluation of reservoir deformation induced by water injection in SAGD wells considering formation anisotropy, heterogeneity and thermal effect, J. Petrol. Sci. Eng., 2017, vol. 157, pp. 767–779. https://doi.org/10.1016/j.petrol.2017.07.067

    Article  Google Scholar 

  8. Roos, H.G., Stynes, M., and Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems, New York: Springer, 2008.

    MATH  Google Scholar 

  9. Brooks, A.N. and Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 1982, vol. 32, pp. 199–259. https://doi.org/10.1016/0045-7825(82)90071-8

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Hughes, T.J.R. and Mallet, M., A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Eng., 1986, vol. 58, pp. 305–328. https://doi.org/10.1016/0045-7825(86)90152-0

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Bochev, P.B., Gunzburger, M.D., and Shadid, J.N., Stability of the SUPG finite element method for transient advection-diffusion problems, Comput. Methods Appl. Mech. Eng., 2004, vol. 193, pp. 2301–2323. https://doi.org/10.1016/j.cma.2004.01.026

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Burman, E., Consistent SUPG-method for transient transport problems: Stability and convergence, Comput. Methods Appl. Mech. Eng., 2010, vol. 199, pp. 1114–1123. https://doi.org/10.1016/j.cma.2009.11.023

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Salnikov, N.N. and Siryk, S.V., Construction of weight functions of the Petrov-Galerkin method for convection-diffusion-reaction equations in the three-dimensional case, Cybern. Syst. Anal., 2014, vol. 50, pp. 805–814. https://doi.org/10.1007/s10559-014-9671-z

    Article  MathSciNet  MATH  Google Scholar 

  14. Hughes, T.J.R., Franca, L.P., and Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin-least-squares method for advective-diffusive equations, Comput. Meth. Appl. Mech. Eng., 1989, vol. 73, pp. 173–189. https://doi.org/10.1016/0045-7825(89)90111-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Franca, L.P., Frey, S.L., and Hughes, T.J.R., Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Eng., 1992, vol. 95, pp. 253–276. https://doi.org/10.1016/0045-7825(92)90143-8

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Codina, R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Eng., 1998, vol. 156, pp. 185–210. https://doi.org/10.1016/S0045-7825(97)00206-5

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Xia, K. and Yao, H., A Galerkin/least-square finite element formulation for nearly incompressible elasticity/stokes flow, Appl. Math. Model., 2007, vol. 31, pp. 513–529. https://doi.org/10.1016/j.apm.2005.11.009

    Article  MATH  Google Scholar 

  18. Ranjan, R., Feng, Y., and Chronopolous, A.T., Augmented stabilized and Galerkin least squares formulations, J. Math. Res., 2016, vol. 8, no. 6, pp. 1–33. https://doi.org/10.5539/jmr.v8n6p1

    Article  Google Scholar 

  19. John, V. and Knobloch, P., On the performance of SOLD methods for convection-diffusion problems with interior layers, Int. J. Comput. Sci. Math., 2007, vol. 1, pp. 245–258. https://doi.org/10.1504/IJCSM.2007.016534

    Article  MathSciNet  MATH  Google Scholar 

  20. John, V. and Knobloch, P., On the choice of parameters in stabilization methods for convection-diffusion equations, in Numerical Mathematics and Advanced Applications, Kunisch, K., Of, G., and Steinbach, O., Eds., Berlin, Heidelberg: Springer, 2008, pp. 297–304. https://doi.org/10.1007/978-3-540-69777-0_35

  21. John, V. and Schmeyer, E., Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Eng., 2008, vol. 198, pp. 475–494. https://doi.org/10.1016/j.cma.2008.08.016

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Hughes, T.J.R., Feijóo, G.R., Mazzei, L., and Quincy, J.-B., The variational multiscale method—A paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., 1998, vol. 166, pp. 3–24. https://doi.org/10.1016/S0045-7825(98)00079-6

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Brezzi, F., Hauke, G., Marini, L.D., and Sangalli, G., Link-cutting bubbles for the stabilization of convection-diffusion-reaction problems, Math. Model. Methods Appl. Sci., 2003, vol. 13, pp. 445–461. https://doi.org/10.1142/S0218202503002581

    Article  MathSciNet  MATH  Google Scholar 

  24. Brezzi, F., Marini, L.D., and Russo, A., On the choice of a stabilizing subgrid for convection-diffusion problems, Comput. Methods Appl. Mech. Eng., 2005, vol. 194, pp. 127–148. https://doi.org/10.1016/j.cma.2004.02.022

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Juanes, R., A variational multiscale finite element method for multiphase flow in porous media, Finite Elem. Anal. Des., 2005, vol. 41, pp. 763–777. https://doi.org/10.1016/j.finel.2004.10.008

    Article  MathSciNet  Google Scholar 

  26. Hughes, T.J.R. and Sangalli, G., Variational multiscale analysis: The fine-scale Green’s function, projection, optimization, localization, and stabilized methods, SIAM J. Numer. Anal., 2007, vol. 45, pp. 539–557. https://doi.org/10.1137/050645646

    Article  MathSciNet  MATH  Google Scholar 

  27. Modirkhazeni, S.M. and Trelles, J.P., Algebraic approximation of sub-grid scales for the variational multiscale modeling of transport problems, Comput. Methods Appl. Mech. Eng., 2016, vol. 306, pp. 276–298. https://doi.org/10.1016/j.cma.2016.03.041

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Sendur, A., Nesliturk, A., and Kaya, A., Applications of the pseudo residual-free bubbles to the stabilization of the convection-diffusion-reaction problems in 2D, Comput. Methods Appl. Mech. Eng., 2014, vol. 277, pp. 154–179. https://doi.org/10.1016/j.cma.2014.04.019

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Zhukov, V.T., Novikova, N.D., Strakhovskaya, L.G., Fedorenko, R.P., and Feodoritova, O.B., Finite superelement method in convection-diffusion problems, KIAM Preprint, Moscow: Keldysh Inst. Appl. Mat., 2001. http://keldysh.ru/papers/2001/prep8/prep2001_8.pdf.

    Google Scholar 

  30. Masud, A. and Calderer, R., A variational multiscale method for incompressible turbulent flows: Bubble functions and fine scale fields, Comput. Methods Appl. Mech. Eng., 2011, vol. 200, pp. 2577–2593. https://doi.org/10.1016/j.cma.2011.04.010

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Coley, C. and Evans, J.A., Variational multiscale modeling with discontinuous subscales: Analysis and application to scalar transport, Meccanica, 2018, vol. 53, pp. 1241–1269. https://doi.org/10.1007/s11012-017-0786-y

    Article  MathSciNet  MATH  Google Scholar 

  32. Do Carmo, E.G.D. and Alvarez, G.B., A new upwind function in stabilized finite element formulations, using linear and quadratic elements for scalar convection-diffusion problems, Comput. Methods Appl. Mech. Eng., 2004, vol. 193, pp. 2383–2402. https://doi.org/10.1016/j.cma.2004.01.015

    Article  MATH  ADS  Google Scholar 

  33. Hauke, G., A simple subgrid scale stabilized method for the advection-diffusion-reaction equation, Comput. Methods Appl. Mech. Eng., 2002, vol. 191, pp. 2925–2947. https://doi.org/10.1016/S0045-7825(02)00217-7

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Ladyzhenskaya, O.A., Solonnikov, V.A., and Ural’tseva, N.N., Lineynye i kvazilineynye uravneniya parabolicheskogo tipa (Linear and Quasi-linear Parabolic Differential Equations), Moscow: Nauka, 1967.

  35. Strang, G. and Fix, G.J., An Analysis of the Finite Element Method, Englewood Cliffs, NJ: Prentice-Hall, 1973.

    MATH  Google Scholar 

  36. Comsol Multiphysics 5.4, Reference Manual, 2018.

Download references

Funding

This work was supported by the Council for Grants of the President of the Russian Federation for Young Russian Scientists (project no. MK-4174.2018.1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Zhelnin, A. A. Kostina or O. A. Plekhov.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhelnin, M.S., Kostina, A.A. & Plekhov, O.A. Variational Multiscale Finite-Element Methods for a Nonlinear Convection–Diffusion–Reaction Equation. J Appl Mech Tech Phy 61, 1128–1139 (2020). https://doi.org/10.1134/S0021894420070226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420070226

Keywords:

Navigation