Skip to main content
Log in

GAS-DROPLET FLOW STRUCTURE AND HEAT TRANSFER IN AN AXISYMMETRIC DIFFUSER WITH A SUDDEN EXPANSION

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper presents the results of a numerical study of the effect of a positive longitudinal pressure gradient in a pipe with a sudden expansion on the turbulent two-phase flow structure and local heat transfer. It is shown that a longitudinal pressure gradient has a significant effect on flow characteristics and heat transfer in separated gas-droplet flow. Increasing the diffuser opening angle leads to a significant increase in the degree of flow turbulence (almost twofold increase compared to gas-droplet flow in a pipe with a sudden expansion at \(\varphi=0^\circ\)). It is found that in the flow under study, the length of the recirculation zone is significantly increased in comparison with separation gas-droplet flow at \(\varphi=0^\circ\) and the point of maximum heat transfer rate is shifted downstream. Furthermore, the coordinate of the point of maximum heat transfer rate does not coincide with the coordinate of the reattachment point of the detached two-phase flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. V. I. Terekhov, T. V. Bogatko, A. Yu. D’yachenko, Ya. I. Smu’lskii, and N. I. Yarygina, Heat Transfer in Subsonic Separated Flows (Novosibirsk State Technical University, Novosibirsk, 2016) [in Russian].

  2. J. K. Eaton and J. P. Johnston, “A Review of Research on Subsonic Turbulent Flow Reattachment," AIAA J. 19, 1093–1100 (1981).

  3. P. Okwuobi and R. S. Azad, “Turbulence in a Conical Diffuser with Fully Developed Flow at Entry," J. Fluid Mech. 57, 603–622 (1973).

  4. A. Klein, “Review: Effects of Inlet Conditions on Conical-Diffuser Performance," Trans. ASME, J. Fluids Eng. 103, 250–257 (1981).

  5. R. S. Azad, “Turbulent Flow in a Conical Diffuser: A Review," Exp. Therm. Fluid Sci. 13, 318–337 (1996).

  6. H. J. Kaltenbach, M. Fatica, R. Mittal, et al., “Study of Flow in a Planar Asymmetric Diffuser Using Large Eddy Simulation," J. Fluid Mech. 390, 151–185 (1990).

  7. D. D. Apsley and M. A. Leschziner, “Advanced Turbulence Modelling of Separated Flow in a Diffuser," Flow, Turb. Combust.63, 81–112 (1999).

  8. J. Ohlsson, P. Schlatter, P. F. Fischer, and D. S. Henningson, “Direct Numerical Simulation of Separated Flow in a Three-Dimensional Diffuser," J. Fluid Mech. 650, 307–318 (2010).

  9. L. B. Wang, W. Q. Tao, Q. W. Wang, and T. T. Wong, “Experimental Study of Developing Turbulent Flow and Heat Transfer in Ribbed Convergent/Divergent Square Ducts," Int. J. Heat Fluid Flow22, 603–613 (2001).

  10. A. I. Leont’ev, V. G. Lushchik, and A. I. Reshmin, “Heat Transfer in Conical Expanding Channels," Teplofiz. Vysok. Temp.54 (2), 287–293 (2016) [High Temp. 54, 270–276 (2016); https://doi.org/10.1134/S0018151X16020115].

  11. V. G. Lushchik and A. I. Reshmin, “Heat Transfer Enhancement in a Plane Separation-Free Diffuser," Teplofiz. Vysok. Temp.56 (4), 589–596 (2018) [High Temp. 56, 569–575 (2018); https://doi.org/10.1134/S0018151X18040120].

  12. D. M. Kuehn, “Effects of Adverse Pressure Gradient on the Incompressible Reattaching Flow over a Rearward-Facing Step," AIAA J. 18 (3), 343–344 (1980).

  13. D. M. Driver and H. L. Seegmiller, “Features of a Reattaching Turbulent Shear Layer in Divergent Channel Flow," AIAA J.23 (2), 163–171 (1985).

  14. S. H. Ra and P. K. Chang, “Effects of Pressure Gradient on Reattaching Flow Downstream of a Rearward-Facing Step," J. Aircraft. 27 (1), 93–95 (1990).

  15. V. I. Terekhov and T. V. Bogatko, “Aerodynamics and Heat Transfer in a Separated Flow in an Axisymmetric Diffuser with Sudden Expansion," Prikl. Mekh. Tekh. Fiz. 56 (3), 147–155 (2015) [J. Appl. Mech. Tech. Phys. 56 (3), 471–478 (2015); https://doi.org/10.1134/S0021894415030177].

  16. T. V. Bogatko, A. Yu. D’yachenko, Ya. I. Smu’lskii, et al., “Features of the Separated Flow behind a Step under the Influence of Both Positive and Negative Longitudinal Pressure Gradients," inProc. 15th Minsk Int. Forum on Heat and Mass Transfer (MMF-15), Minsk (Belarus), May 23–26, 2016 (Inst. of Heat and Mass Transfer, Minsk, 2016), Paper. No. 1-06.

  17. Y. Hardalupas, A. M. K. P. Taylor, and J. H. Whitelaw, “Particle Dispersion in a Vertical Round Sudden-Expansion Flow," Philos. Trans. Roy. Soc. London, Ser. A 341, 411–442 (1992).

  18. L. I. Zaichik, M. V. Kozelev, and V. A. Pershukov, “Calculation of Turbulent Gas-Dispersion Flows in Channels with Recirculation Eddies," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 65–75 (1994) [Fluid Dyn. 29, 491–499 (1994); https://doi.org/10.1007/BF02319070].

  19. J. R. Fessler and J. K. Eaton, “Turbulence Modification by Particles in a Backward-Facing Step Flow," J. Fluid Mech.314, 97–117 (1999).

  20. F. Li, H. Qi, and C. F. You, “Phase Doppler Anemometry Measurements and Analysis of Turbulence Modulation in Dilute Gas–Solid Two-Phase Shear Flows," J. Fluid Mech. 663, 434–455 (2010).

  21. K. Hishida, T. Nagayasu, and M. Maeda, “Augmentation of Convective Heat Transfer by an Effective Utilization of Droplet Inertia," Int. J. Heat Mass Transfer 38, 1773–1785 (1995).

  22. V. I. Terekhov and M. A. Pakhomov, “The Simulation of Turbulent Two-Phase Flow after an Abrupt Expansion of the Pipe in the Presence of Evaporation of Droplets," Teplofiz. Vysok. Temp.47 (3), 423–430 (2009) [High Temp. 47, 400–407 (2009); https://doi.org/10.1134/S0018151X09030134].

  23. M. A. Pakhomov and V. I. Terekhov, “Second Moment Closure Modelling of Flow, Turbulence and Heat Transfer in Droplet-Laden Mist Flow in a Vertical Pipe with Sudden Expansion," Int. J. Heat Mass Transfer66, 210–222 (2013).

  24. A. A. Majul, N. H. Hamza, and N. M. Jasim, “Spray Interface Drag Modeling Based on the Power-Law Droplet Velocity Using the Moment Theory," Prikl. Mekh. Tekh. Fiz. 61 (1), 71–81 (2020) [J. Appl. Mech. Tech. Phys. 61 (1), 61–69 (2020); https://doi.org/10.1134/S0021894420010071].

  25. S. Elghobashi, “On Predicting Particle-Laden Flows," Appl. Sci. Res. 52, 309–329 (1994).

  26. A. Fadai-Ghotbi, R. Manceau, and J. Boree, “Revisiting URANS Computations of the Backward-Facing Step Flow Using Second Moment Closures. Influence of the Numerics," Flow, Turb. Combust.81, 395–410 (2008).

  27. R. Manceau and K. Hanjalic, “Elliptic Blending Model: A New Near-Wall Reynolds-Stress Turbulence Closure," Phys. Fluids14, 744–754 (2002).

  28. N. Beishuizen, B. Naud, and D. Roekaerts, “Evaluation of a Modified Reynolds Stress Model for Turbulent Dispersed Two-Phase Flows Including Two-Way Coupling," Flow, Turbulence Combust.79, 321–341 (2007).

  29. L. I. Zaichik, “A Statistical Model of Particle Transport and Heat Transfer in Turbulent Shear Flows," Phys. Fluids 11, 1521–1534 (1999).

  30. I. V. Derevich, “Statistical Modelling of Mass Transfer in Turbulent Two-Phase Dispersed Flows. 1. Model Development," Int. J. Heat Mass Transfer 43, 3709–3723 (2000).

  31. V. I. Terekhov and M. A. Pakhomov, “Numerical Study of Hydrodynamics and Heat and Mass Transfer of a Ducted Gas–Vapor Droplet Flow," Prikl. Mekh. Tekh. Fiz. 44 (1), 108–122 (2003) [J. Appl. Mech. Tech. Phys. 44 (1) 90–101 (2003); https://doi.org/10.1023/A:1021738031778].

  32. K. Hanjalic and S. Jakirlic, “Contribution toward the Second-Moment Closure Modelling of Separating Turbulent Flows," Comput. Fluids27, 137–156 (1998).

  33. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher,Computational Fluid Mechanics and Heat Transfer(Taylor and Francis, New York, 1997).

  34. W. M. Kays and M. E. Crawford, Convective Heat and Mass Transfer (McGraw-Hill, New York, 1993).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pakhomov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomov, M.A., Terekhov, V.I. GAS-DROPLET FLOW STRUCTURE AND HEAT TRANSFER IN AN AXISYMMETRIC DIFFUSER WITH A SUDDEN EXPANSION. J Appl Mech Tech Phy 61, 787–797 (2020). https://doi.org/10.1134/S0021894420050132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420050132

Keywords

Navigation