Skip to main content
Log in

ON THE PROBLEM OF USING PARTICLE IMAGE VELOCIMETRY FOR MEASUREMENTS IN HIGH-VELOCITY THIN SHEAR LAYERS

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The flow velocity in the region of shock wave–boundary layer interaction on a plate for a Mach number M = 1.43 was measured using particle image velocimetry. The laminar and turbulent states of the incoming boundary layer are considered; the boundary-layer thickness can be two orders of magnitude smaller than the characteristic longitudinal scale of the flow. The results of measuring the boundary-layer velocity by particle image velocimetry for various equipment settings are compared with the results of measurements using various algorithms to determine tracer particle displacements and use them to reconstruct velocity fields. It is shown that the main limitation for increasing the spatial resolution is the inertia of tracer particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. D. M. Markovich and M. P. Tokarev, “Algorithms for Reconstructing a Three-Component Velocity Field in Stereo PIV," Vychisl. Met. Programm. Novye Vychisl. Tekhnol. 9 (1), 311–326 (2008).

  2. F. Scarano, “Tomographic PIV: Principles and Practice," Measur. Sci. Technol. 24 (1), 445–463 (2013).

  3. P. L. van Gent, B. W. van Oudheusden, and F. F. J. Schrijer, “Determination of Mean Pressure from PIV in Compressible Flows Using the Reynolds-Averaging Approach," Exp. Fluids 59(3), 1–14 (2018).

  4. P. A. Polivanov, “Calculating Pressure Fields on the Basis of PIV-Measurements for Supersonic Flows," Teplofiz. Aeromekh.25 (5), 821–824 (2018) [Thermophys. Aeromech.25 (5), 789–792 (2018); https://doi.org/10.1134/S0869864318050153].

  5. P. A. Polivanov, O. I. Vishnyakov, A. A. Sidorenko, and A. A. Maslov, “Comparison of Flows Induced by a Dielectric Barrier Discharge and a Sliding Discharge," Prikl. Mekh. Tekh. Fiz.54 (3), 21–29 (2013) [J. Appl. Mech. Tech. Phys.54 (3), 359–366 (2013); https://doi.org/10.1134/S0021894413030036].

  6. E. K. Akhmetbekov, A. V. Bil’skii, D. M. Markovich, et al., “Application of POLIS PIV System for Measurement of Velocity Fields in a Supersonic Flow of the Wind Tunnels," Teplofiz. Aeromekh.16 (3), 343–352 (2009) [Thermophys. Aeromech.16 (3), 325–334 (2009); https://doi.org/10.1134/S0869864309030019].

  7. Yu. V. Gromyko, A. A. Maslov, P. A. Polivanov, et al., “Experimental Verification of the Method of Calculating the Flow Parameters in the Test Section of the Hotspot Wind Tunnel," Prikl. Mekh. Tekh. Fiz. 53 (5), 79–89 (2012) [J. Appl. Mech. Tech. Phys. 53 (5), 700–709 (2012); https://doi.org/10.1134/S0021894412050094].

  8. V. M. Boiko, A. A. Pivovarov, and S. V. Poplavski, “Measurement of Gas Velocity in a High-Gradient Flow, Based on Velocity of Tracer Particles," Fiz. Goreniya Vzryva 49 (5), 47–54 (2013) [Combust., Expl., Shock Waves 49 (5), 548–554 (2013); DOI: 10.1134/S0010508213050067].

  9. F. Scarano, “Overview of PIV in Supersonic Flows," Topics Appl. Phys. 112, 445–463 (2008).

  10. P. A. Polivanov, A. A. Sidorenko, and A. A. Maslov, “Correlations Study in Shock Wave/Turbulent Boundary Layer Interaction," Pisma Zh. Tekh. Fiz. 36 (3), 23–30 (2010) [Tech. Phys. Lett.36 (3), 104–107 (2010); https://doi.org/10.1134/S1063785010020045].

  11. M. Swoboda and W. Nitsche, “Shock Boundary-Layer Interaction on Transonic Airfoils for Laminar and Turbulent Flow," J. Aircraft.33 (1), 100–108 (1996).

  12. A. Zheltovodov, “Some Advances in Research of Shock Wave Turbulent Boundary Layer Interactions," AIAA Paper No. 2006-0496 (Reno, 2006).

  13. P. Dupont, S. Piponniau, A. Sidorenko, et al., “Investigation by Particle Image Velocimetry Measurements of Oblique Shock Reflection with Separation," AIAA J. 46 (6), 1365–1370 (2008).

  14. E. Allison, I. Kroo, P. Sturdza, et al., “Aircraft Conceptual Design with Natural Laminar Flow," Int. Counc. Aeronaut. Sci.1, 428–436 (2010).

  15. P. A. Polivanov, A. A. Sidorenko, and A. A. Maslov, “Transition Effect on Shock Wave/Boundary Layer Interaction at M = 1.47. AIAA Paper No. 2015-1974 (Kissimmee, 2015).

  16. R. H. M. Giepman, F. F. J. Schrijer, and B. W. van Oudheusden, “High-Resolution PIV Measurements of a Transitional Shock Wave-Boundary Layer Interaction," Exp. Fluids 56(6), 1–20 (2015).

  17. M. P. Tokarev, D. M. Markovich, and A. V. Bil’skii, “Adaptive Particle Image Processing Algorithms for Calculating Instantaneous Velocity Fields," Vychisl. Tekhnol. 12 (3), 109–131 (2007).

  18. A. Melling, “Tracer Particles and Seeding for Particle Image Velocimetry," Measur. Sci. Technol. 8 (12), 1406–1416 (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. I. Vishnyakov or P. A. Polivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishnyakov, O.I., Polivanov, P.A. & Sidorenko, A.A. ON THE PROBLEM OF USING PARTICLE IMAGE VELOCIMETRY FOR MEASUREMENTS IN HIGH-VELOCITY THIN SHEAR LAYERS. J Appl Mech Tech Phy 61, 748–756 (2020). https://doi.org/10.1134/S0021894420050089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420050089

Keywords

Navigation