Skip to main content
Log in

Characteristics of Reinforced Ultra-High Molecular Weight Polyethylene During Its Ballistic Penetration

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Bulk samples of pure ultra-high molecular weight polyethylene and bulk samples reinforced with metal interlayers (steel meshes and penetrated titanium plates) are obtained by cyclic impact compaction. Experiments are carried out in which the properties of compacts made of ultrahigh molecular weight polyethylene with and without metal interlayers are studied during penetration by a lead shot whose pellets (8 mm in diameter) move at a velocity of approximately 370 m/s. The penetration depth of a pellet into a compact is experimentally determined. To estimate the penetration depth of a spherical body into a polymer, a model is proposed that describes the motion of a sphere in this medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Jauffres, O. Lame, G. Vigier, and F. Dore, “Microstructural Origin of Physical and Mechanical Properties of Ultra High Molecular Weight Polyethylene Processed by High Velocity Compaction,” Polymer 48 (21), 6374–6383 (2007); DOI: https://doi.org/10.1016/j.polymer.2007.07.058.

    Article  Google Scholar 

  2. B. S. Zlobin, A. A. Shtertser, V. V. Kiselev, et al., “Cyclic Impact Compaction of Ultra High Molecular Weight Polyethylene Powder,” Prikl. Mekh. Tekh. Fiz. 58 (3), 68–76 (2017) [J. Appl. Mech. Tech. Phys. 58 (3), 712–719 (2017); DOI: https://doi.org/10.1134/S0021894417030087].

    Google Scholar 

  3. B. S. Zlobin, A. A. Shtertser, V. V. Kiselev, and S. D. Shemelin, “Impact Compaction of Ultra High Molecular Weight Polyethylene,” J. Phys.: Conf. Ser. 894, 012034 (2017); DOI: https://doi.org/10.1088/1742-6596/894/1/012034.

    Google Scholar 

  4. “Viscosity of Polymers: A Welder’s Virtual Guide,” http://svarka-info.com/content/viscositypolymers.

  5. Yu. A. Mikhailin, “Ultra-High-Molecular Polyethylene,” Polimer. Mater., No. 3, 18–21 (2003).

    Google Scholar 

  6. Yu. A. Mikhailin, “Ultra-High-Molecular Polyethylene (Continued),” Polimer. Mater., No. 4, 24–27 (2003).

    Google Scholar 

  7. Yu. A. Mikhailin, “Ultra-High-Molecular Polyethylene (Continued),” Polimer. Mater., No. 6, 22–24 (2003).

    Google Scholar 

  8. Yu. A. Mikhailin, “Ultra-High-Molecular Polyethylene (Final),” Polimer. Mater., No. 7, 17–19 (2003).

    Google Scholar 

  9. C. M. Roland, D. Fragiadakis, and R. M. Gamache, “Elastomer-Steel Laminate Armor,” Compos. Struct. 92, 1059–1064 (2010); DOI: https://doi.org/10.1016/j.compstruct.2009.09.057.

    Article  Google Scholar 

  10. Y. B. Guo, H. J. Chiang, J. J. Deng, and V. P. W. Shim, “Projectile Impact on Fabric-Metal Assemblies—Influence of Fabric-Metal Sequence,” Int. J. Impact Eng. 127, 1–16 (2019); DOI: https://doi.org/10.1016/j.ijimpeng.2019.01.004.

    Article  Google Scholar 

  11. W. Burian, P. Żochowski, M. Gmitrzuk, et al., “Protection Effectiveness of Perforated Plates Made of High Strength Steel,” Int. J. Impact Eng. 126, 27–39 (2019); DOI: https://doi.org/10.1016/j.ijimpeng.2018.12.006.

    Article  Google Scholar 

  12. S.-L. Soo, Fluid Dynamics of Multiphase Systems (Blaisdell, Waltham, 1967).

    MATH  Google Scholar 

  13. H. B. Dwight, Tables of Integrals and Other Mathematical Data (Macmillan, New York, 1961).

    MATH  Google Scholar 

  14. A. A. Deribas, Physics of Hardening and Explosion Welding (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1988; Pergamon Press, 1959).

    Google Scholar 

  16. Ch. E. Anderson, Jr., “Analytical Models for Penetration Mechanisms: A Review,” Int. J. Impact Eng. 108, 3–26 (2017); DOI: https://doi.org/10.1016/j.ijimpeng.2017.03.018.

    Article  Google Scholar 

  17. U. Heisserer, H. Van Der Werff, and J. Hendrix, “Ballistic Depth of Penetration Studies in Dyneema® Composites,” in Proc. of the 27th Int. Symp. on Ballistics, Freiburg, Germany, April 22–26, 2013 (DEStech Publ. Inc., S. l., 2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shtertser.

Additional information

Original Russian Text © A.A. Shtertser, B.S. Zlobin, V.V. Kiselev, S.D. Shemelin, P.A. Bukatnikov.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 61, No. 3, pp. 180–189, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtertser, A.A., Zlobin, B.S., Kiselev, V.V. et al. Characteristics of Reinforced Ultra-High Molecular Weight Polyethylene During Its Ballistic Penetration. J Appl Mech Tech Phy 61, 471–478 (2020). https://doi.org/10.1134/S0021894420030190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420030190

Keywords

Navigation