Skip to main content
Log in

Finite Deformation of a Panel in Ideal Plasticity and Superplasticity

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Finite deformation of a panel under the influence of pressure is considered. The statement of the problem in displacements with equilibrium conditions represented via true stresses in Lagrangian coordinates is proposed. It is proven that the initial equations are satisfied when the panel is uniformly curved during deformation. The use of the previously proposed defining relation makes it possible to determine a differential relationship of the laws of pressure and curvature with time at an arbitrary strain rate. Ideally plastic and superplastic deformations are considered. The dependences of pressure on the curvature and strain time are obtained at which superplasticity occurs. It is revealed that, in this case, the range of stable changes in the curvature does not depend on the strain rate, and the threshold stress does not affect the time it takes to reach a given curvature of the panel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Smirnov, Pressure Treatment of Metals in Superplastictity (Mashinostroenie, Moscow, 1979) [in Russian].

    Google Scholar 

  2. E. N. Chumachenko, O. M. Smirnov, and M. A. Tsepin, Superplasticity: Materials, Theory, and Technologies (Librokom, Moscow, 2009) [in Russian].

    Google Scholar 

  3. R. A. Vasin and F. U. Enikeev, Introduction to Superplasticity Mechanics, Vol. 2 (Gilem, Ufa, 1999) [in Russian].

  4. A. V. Korznikov, G. F. Korznikova, R. G. Zaripova, and A. A. Zakirova “Superplasticity of Steel and Iron Based Alloys. Overview,” Pis’ma Mater. 2 (3), 170–176 (2012).

    Google Scholar 

  5. Y. H. Zhao, Y. Z. Guo, Q. Wei, et al., “Influence of Specimen Dimensions on the Tensile Behavior of Ultrafine-Grained Cu,” Scripta Mater. 59, 627–630 (2008).

    Article  Google Scholar 

  6. F. K. Abu-Farha and M. K. Khraisheh, “Modeling of Anisotropic Deformation in Superplastic Sheet Metal Stretching,” J. Eng Mater. Technol. 127 (1), 159–164 (2005).

    Article  Google Scholar 

  7. F. K. Abu-Farha and M. K. Khraisheh, “Analysis of Superplastic Deformation of AZ31 Magnesium Alloy,” J. Adv. Eng. Mater. 9 (9), 777–783 (2007).

    Article  Google Scholar 

  8. J. Bonet, R. D. Wood, and A. H. S. Wargadipura, “Numerical Simulation of the Superplastic Forming of Thin Sheet Components Using the Finite Element Method,” Int. J. Numer. Meth. Eng. 30, 1719–1737 (1990).

    Article  Google Scholar 

  9. Y. Chen, K. Kibble, R. Hall, and X. Huang, “Numerical Analysis of Superplastic Blow Forming of Ti-6Al-4V Alloys,” Mater. Des. 22, 679–685 (2001).

    Article  Google Scholar 

  10. R. A. Vasin, F. U. Enikeev, A. A. Kruglov, and R. V. Safiullin, “Identifying the Constitutive Equations According to Results of Engineering Experiments,” Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 2, 111–123 (2003).

    Google Scholar 

  11. I. E. Keller, P. V. Trusov, O. V. Shishkina, and D. V. Davydov, “Stability Approach to Testing the Constitutive Relations of Superplasticity,” Prikl. Mekh. Tekh. Fiz. 48 (6), 170–177 (2007) [J. Appl. Mech. Tech. Phys. 48 (6), 915–921 (2007)].

    MATH  Google Scholar 

  12. V. R. Ganieva, O. P. Tulupova, F. U. Enikeev, and A. A. Kruglov, “Modeling of Superplastic Structural Materials,” Vest. Mashinostr., No. 2, 63–69 (2017) [Russian Eng. Res. 37 (5), 401–407 (2017)].

    Google Scholar 

  13. R. A. Vasin, F. U. Enikeev, and M. I. Mazurski, “Method to Determine the Strain-Rate Sensitivity of a Superplastic Material from the Initial Slopes of its Stress-Strain Curves,” J. Mater. Sci. 33 (4), 1099–1103 (1998).

    Article  ADS  Google Scholar 

  14. O. P. Tulupova, V. R. Ganieva, A. A. Kruglov, and F. U. Enikeev, “New Method for Finding Constituent Equations on the Basis of Engineering Experiments,” Pis’ma Mater. 7 (1), 68–71 (2017).

    Google Scholar 

  15. A. E. Gvozdev and A. A. Markin, “Thermomechanics of Elastic-Viscoplastic Finite Deformation,” Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 6, 115–121 (1998).

    Google Scholar 

  16. A. A. Markin and S. A. Fursaev, “Finite Deformation of an Ideal Rigid-Plastic Membrane,” Prikl. Mekh. Tekh. Fiz. 48 (6), 170–177 (2007) [J. Appl. Mech. Tech. Phys. 48 (6), 915–921 (2007)].

    Google Scholar 

  17. B. V. Gorev, A. A. Ratnichkin, and O. V. Sosnin, “Laws of Deformation of Materials under Conditions Close to Superplasticity. Communication 1. Uniaxial Stress State,” Probl. Prochn. 1 (11), 36–41 (1987) [Strength Mat. 1 (11), 1504–1509 (1987)].

    Google Scholar 

  18. R. A. Vasin and O. I. Bylya, “Statement of the Superplasticity Condition in Mechanics Problems (Problem of Its Experimental Construction),” Pis’ma Mater. 3 (2), 95–98 (2013).

    Google Scholar 

  19. R. A. Vasin, F. U. Enikeev, M. Tokuda, and R. V. Safiullin, “Mathematical Modelling of the Superplastic Forming of a Long Rectangular Sheet,” Int. J. Non-Linear Mech. 35, 799–807 (2003).

    Article  MATH  Google Scholar 

  20. M. Kawasaki and T. G. Langdon, “Review: Achieving Superplasticity in Metals Processed by High-Pressure Torsion,” J. Mater. Sci. 49, 6487–6496 (2014).

    Article  ADS  Google Scholar 

  21. A. J. M. Shih and H. T. Y. Yang, “Experimental and Finite Element Simulation Methods for Rate-Dependent Metal Forming Processes,” Int. J. Numer. Methods Eng. 31 (2), 345–367 (1991).

    Article  MATH  Google Scholar 

  22. A. A. Kruglov, A. Yu. Samoilova, A. A. Slesareva, et al., “Analysis of the Modes of Superplastic Molding of Three-Layer Structures Using the Perzyna Model,” Pis’ma Mater. 4 (1), 72–75 (2014).

    Google Scholar 

  23. A. R. Goronkova, F. U. Enikeev, and A. A. Kruglov, “Application of the Perzyna Model for Simulating the Superplastic Forming of a Rectangular Membrane,” Kuzn. Shtamp. Proizv., No. 9, 11–18 (2016).

    Google Scholar 

  24. B. D. Annin, A. I. Oleinikov, and K. S. Bormotin, “Modeling of Forming of Wing Panels of the SSJ-100 Aircraft,” Prikl. Mekh. Tekh. Fiz. 51 (4), 155–165 (2010) [J. Appl. Mech. Tech. Phys. 51 (4), 579–589 (2010)].

    MATH  Google Scholar 

  25. A. I. Lurie, Nonlinear Theory of Elasticity (North Holland, 1990).

    MATH  Google Scholar 

  26. A. A. Markin and M. Yu. Sokolova, Thermomechanics of Elastoplastic Deformation (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  27. A. Yu. Ishlinskii and D. D. Ivlev, Mathematical Theory of Plasticity (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  28. B. D. Annin and V. M. Zhigalkin, Behavior of Materials under Complex Loading (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1999) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Glagolev.

Additional information

Original Russian Text © V. V. Glagolev, L.V. Glagolev, A.A. Markin.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 6, pp. 192–201, November-December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glagolev, V.V., Glagolev, L.V. & Markin, A.A. Finite Deformation of a Panel in Ideal Plasticity and Superplasticity. J Appl Mech Tech Phy 60, 1141–1148 (2019). https://doi.org/10.1134/S0021894419060191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419060191

Keywords

Navigation