Skip to main content
Log in

Local Adiabatic Heating Effect in Finite-Strain Elastic-Plastic Torsion

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

In this paper, the torsion of an incompressible circular cylinder with fixed ends made of polymer material relative to the axis of symmetry is studied taking into account adiabatic heating. The conservative deformation mechanism is determined by the Mooney-Rivlin elastic potential, and the dissipative deformation mechanism by the Tresca-Saint-Venant plastic potential. The problem is solved using multiplicative decomposition of the Almansi total strain measure into elastic and plastic parts. It is assumed that the local change in material temperature is due only to plastic dissipation. The thermal deformation of the material and hardening are neglected. The exact solution of the problem is obtained for an arbitrary dependence of the mechanical characteristics of the material on temperature. In particular, the axial force, the torque, and the temperature distribution in the sample as a function of increasing loading parameter are determined. The resulting solution is compared with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Lee, “Elastic-Plastic Deformation at Finite Strains”, J. Appl. Mech. 36 (1), 1–6 (1969.

    Article  ADS  MathSciNet  Google Scholar 

  2. R. J. Clifton, “On the Equivalence of FeFp and pe”, J. Appl. Mech. 39 (1), 287–289 (1972).

    Article  ADS  Google Scholar 

  3. V. I. Kondaurov, “Equations of Elastoviscoplastic Medium with Finite Deformations”, Prikl. Mekh. Tekh. Fiz. 23 (4), 133–139 (1982 [J. Appl. Mech. Tech. Phys. 23 (4), 584–591 (1982].

    MathSciNet  Google Scholar 

  4. V. I. Levitas, Large Elastoplastic Deformations of Materials at High Pressure (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  5. O. T. Bruhns, “The Multiplicative Decomposition of the Deformation Gradient in Plasticity-Origin and Limitations”, Adv. Struct. Mater. 64, 37–66 (2015).

    Article  Google Scholar 

  6. G. I. Bykovtsev and A. V. Shitikov, “Finite Deformations of Elastoplastic Media”, Dokl. Akad. Nauk SSSR 311 (1), 59–62 (1990).

    MathSciNet  MATH  Google Scholar 

  7. P. M. Naghdi, “A Critical Review of the State of Finite Plasticity”, Z. Angew. Math. Phys. 41 (3), 315–394 (1990).

    Article  MathSciNet  Google Scholar 

  8. A. A. Rogovoi, “Constitutive Relations for Finite Elastic-Inelastic Strains”, Prikl. Mekh. Tekh. Fiz. 46 (5), 138–149 (2005 [J. Appl. Mech. Tech. Phys. 46 (5), 730–739 (2005].

    MathSciNet  MATH  Google Scholar 

  9. H. Xiao, O. T. Bruhns, and A. Meyers, “Elastoplasticity Beyond Small Deformations”, Acta Mech. 182 (1), 31–111 (2006).

    Article  Google Scholar 

  10. A. V. Shutov and J. Ihlemann, “Analysis of Some Basic Approaches to Finite Strain Elasto-Plasticity in View of Reference Change”, Int. J. Plasticity 63, 183–197 (2014).

    Article  Google Scholar 

  11. P. V. Trusov, A. I. Shveykin, and A. Yu. Yanz, “Motion Decomposition, Frame-Indifferent Derivatives, and Constitutive Relations at Large Displacement Gradients from the Viewpoint of Multilevel Modeling”, Fiz. Mezomekh. 19 (2), 47–65 (2016 [Phys. Mesomech. 20 (4), 357–376 (2017)].

    Google Scholar 

  12. V. P. Myasnikov, “Equations of Motion of Elastoplastic Materials at Large Deformations”, Vestn. Dalnevost. Otd. Ross. Akad. Nauk, No. 4, 8–13 (1996).

    Google Scholar 

  13. A. A. Burenin, G. I. Bykovtsev, and L. V. Kovtanyuk, “One Simple Model For an Elastoplastic Medium at Finite Deformations”, Dokl. Akad. Nauk 347 2, 199–201 (1996).

    MATH  Google Scholar 

  14. A. A. Burenin and L. V. Kovtanyuk, Large Irreversible Deformations and Elastic Aftereffect (Dal’nauka, Vladivostok, 2013) [in Russian].

    Google Scholar 

  15. A. A. Burenin, L. V. Kovtanyuk, and G. L. Panchenko, “Deformation and Heating of Elastoviscoplastic Cylindrical Layer As It Moves Due to Varying Pressure”, Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 1, 6–18 (2018).

    Google Scholar 

  16. A. S. Begun, A. A. Burenin, and L. V. Kovtanyuk, “Large Irreversible Deformations in Varying Mechanisms of Their Production and the Problem of Setting Plastic Potentials”, Dokl. Akad. Nauk 470 (3), 275–278 (2016).

    MathSciNet  Google Scholar 

  17. A. N. Prokudin and S. V. Firsov, “Antiplane Strain of Hardening Elastoviscoplastic Medium”, J. Sib. Federal Univ. Math. Phys. 11 (4), 399–410 (2018).

    Article  MathSciNet  Google Scholar 

  18. G. M. Sevast’yanov and A. A. Burenin, “Large Deformations in the Case of Torsion of an Incompressible Elastoplastic Cylinder”, Dokl. Akad. Nauk 482 (3), 285–287 (2018).

    Google Scholar 

  19. A. Nadai, “Der Beginn des Fliefivorganges in Einem Tordierten Stab”, J. Appl. Math. Mech. 3 (6), 442–454 (1923.

    MATH  Google Scholar 

  20. D. D. Ivlev, Theory of Ideal Plasticity (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  21. K. W. Neale and S. C. Shrivastava, “Analytical Solutions for Circular Bars Subjected to Large Strain Plastic Torsion”, J. Appl. Mech. 57 (2), 298–306 (1990.

    Article  ADS  Google Scholar 

  22. P. D. Wu and E. van der Giessen, “Analysis of Elastic-Plastic Torsion of Circular Bars at Large Strains”, Arch. Appl. Mech. 61, 89–103 (1991).

    Article  ADS  Google Scholar 

  23. J. K. Dienes, “On the Analysis of Rotation and Stress Rate in Deforming Bodies”, Acta Mech. 32 (4), 217–232 (1979).

    Article  MathSciNet  Google Scholar 

  24. D. D. Ivlev, “Determination of Displacements in the L. A. Galin Problem”, Prikl. Mat. Mekh. 21 (5), 716–717 (1957).

    MathSciNet  Google Scholar 

  25. D. D. Ivlev, “Three Discussions on Mechanics”, Vest. Samar. Univ., Estest.-Nauch. Ser. 54 (4), 115–123 (2007.

    Google Scholar 

  26. N. Kh. Arutyunyan and Yu. N. Radeev, “Elastoplastic Torsion of a Cylindrical Rod at Finite Deformations”, Prikl. Mat. Mekh. 53 (6), 1014–1022 (1989.

    MathSciNet  Google Scholar 

  27. B. Dodd and Y. Bai, “Width of Adiabatic Shear Bands”, Mater. Sci. Technol. 1 (1), 38–40 (1985.

    Article  Google Scholar 

  28. N. M. Ames, V. Srivastava, S. A. Chester, and L. Anand, “A Thermo-Mechanically Coupled Theory for Large Deformations of Amorphous Polymers. Pt 2. Applications”, Int. J. Plasticity 25 (8), 1495–1539 (2009.

    Article  Google Scholar 

  29. M. Mooney, “A Theory of Large Elastic Deformation”, J. Appl. Phys. 11 9, 582–592 (1940).

    Article  ADS  Google Scholar 

  30. A. I. Lurie, Non-linear Theory of Elasticity (Nauka, Moscow, 1980; Elsevier, Amsterdam, 1990).

    Google Scholar 

  31. R. S. Rivlin, “Large Elastic Deformations of Isotropic Materials. 6. Further Results in the Theory of Torsion, Shear and Flexure”, Philos. Trans. Roy. Soc. London, Ser. A. 242 845, 173–195 (1949).

    ADS  MathSciNet  MATH  Google Scholar 

  32. J. L. Ericksen, “Deformations Possible in Every Isotropic, Incompressible, Perfectly Elastic Body”, Z. Angew. Math. Phys. 5 (6), 466–489 (1954.

    Article  MathSciNet  Google Scholar 

  33. J.-L. Perez-Castellanos and A. Rusinek, “Temperature Increase Associated with Plastic Deformation under Dynamic Compression: Application to Aluminium AL 6082”, J. Theor. Appl. Mech. 50 (2), 377–398 (2012.

    Google Scholar 

  34. E. V. Karpov and A. Yu. Larichkin, “Impact of Axial Compression and Torque on Strain Localization and Fracture cder Complex Cyclic Loading of Plexiglas Rods”, Prikl. Mekh. Tekh. Fiz. 55 (1), 115–126 (2014 [J. Appl. Mech. Tech. Phys. 55 (1), 95–104 (2014].

    Google Scholar 

  35. J. Richeton, S. Ahzi, K. S. Vecchio, et al., “Influence of Temperature and Strain Rate on the Mechanical Behavior of Three Amorphous Polymers: Characterization and Modeling of the Compressive Yield Stress”, Int. J. Solids Struct. 43, 2318–2335 (2006).

    Article  Google Scholar 

  36. C. R. Siviour, S. M. Walley, W. G. Proud, and J. E. Field, “Mechanical Behaviour of Polymers at High Rates of Strain”, J. Physique IV. 134, 949–955 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Sevast’yanov.

Additional information

Original Russian Text © G.M. Sevast’yanov, A.A. Burenin.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 6, pp. 149–161, November-December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevast’yanov, G.M., Burenin, A.A. Local Adiabatic Heating Effect in Finite-Strain Elastic-Plastic Torsion. J Appl Mech Tech Phy 60, 1104–1114 (2019). https://doi.org/10.1134/S0021894419060166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419060166

Keywords

Navigation