Skip to main content
Log in

On the Choice of Forming Modes and Estimation of Residual Service Life Using Kinetic Equations with a Scalar Damage Parameter

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The kinetic equations of creep are used to compare damage accumulation in rods under tension in two forming modes: at constant stresses and at constant strain rates corresponding to strain rates in steady-state creep for the same stresses. It is found that from the point of view of increasing the residual service life at the production stage, forming to the required strain value with specified kinematics is preferable to forming at constant stresses for materials on whose strain-time diagrams for σ = const, the fracture strain decreases monotonically with increasing stress. Forming at constant stresses is preferable for materials on whose strain-time diagrams for σ = const, the fracture strain increases monotonically with increasing stress. Calculation results for several alloys are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Banshchikova, and I. Yu. Tsvelodub, “On One Class of Inverse Problems of Variation in Shape of Viscoelastic Plates,” Prikl. Mekh. Tekh. Fiz. 37 (6), 122–131 (1996) [J. Appl. Mech. Phys. 37 (6), 876–883 (1996)].

    MATH  Google Scholar 

  2. I. A. Banshchikova, and I. V. Sukhorukov, “Two-Dimensional Problems of Torsion and Bending of Profiles under Creep,” Vychisl. Tekhnol.-Region. Vest. Vostoka (joint edition) 8 (3), 104–110 (2003).

    Google Scholar 

  3. I. Yu. Tsvelodub, The Stability Postulate and Its Applications in Creep Theory of Metals (Lavrentyev Inst. of Hydrodynamics, Siberian Branch, USSR Acad. of Sci., Novosibirsk, 1991) [in Russian].

    Google Scholar 

  4. K. S. Bormotin, and A. Vin, “A Method of Dynamic Programming in the Problems of Optimal Panel Deformation in the Creep Mode,” Vychisl. Met. Programm. 19 (4), 470–478 (2018).

    Google Scholar 

  5. K. S. Bormotin, “Inverse Problems of Optimal Control in Creep Theory,” Sib. Zh. Indust. Mat. 15 (2), 33–42 (2012).

    MathSciNet  MATH  Google Scholar 

  6. K. S. Bormotin, and A. I. Oleinikov, “Variational Principles and Optimal Solutions of the Inverse Problems of Creep Bending of Plates,” Prikl. Mekh. Tekh. Fiz. 53 (5), 136–46 (2012) [J. Appl. Mech. Phys. 53 (5), 751–760 (2012)].

    MATH  Google Scholar 

  7. O. V. Sosnin, B. V. Gorev, and A. F. Nikitenko, Energy Version of Creep Theory (Institute of Hydrodynamics, Siberian Branch, USSR Acad. of Sci, Novosibirsk, 1986) [in Russian].

    MATH  Google Scholar 

  8. B. V. Gorev, I. V. Lyubashevskaya, V. A. Panamarev, and S. V. Iyavoyenen, “Description of Creep and Fracture Process of Modern Construction Materials using Kinetic Equations in Energy Form,” Prikl. Mekh. Tekh. Fiz. 55 (6), 132–144 (2014) [J. Appl. Mech. Phys. 55 (6), 1020–1030 (2014)].

    Google Scholar 

  9. B. V. Gorev, and I. D. Klopotov, “Description of the Creep Process and Long Strength by Equations with One Scalar Damage Parameter,” Prikl. Mekh. Tekh. Fiz. 35 (5), 92–102 (1994) [J. Appl. Mech. Phys. 35 (5), 726–734 (1994)].

    Google Scholar 

  10. B. V. Gorev, and I. A. Banshchikova, “Description of the Creep and Fracture of Hardened Materials According to Kinetic Equations with a Scalar Damage Parameter,” Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, No. 2, 90–98 (2009).

    Google Scholar 

  11. B. V. Gorev, and I. A. Banshchikova, “Description of the Falling Section of the Strain-Strain Curve using Kinetic Equations with a Scalar Damage Parameter,” Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, No. 2, 110–117 (2008).

    Google Scholar 

  12. S. V. Iyavoynen, I. A. Banshchikova, I. V. Lubashevskaya, M. A. Legan, “High Temperature Creep of Steel 09G2S under Non-Stationary Loading,” J. Phys.: Conf. Ser. 894. 012123 (2017); DOI: https://doi.org/10.1088/1742-6596/894/1/012123.

    Google Scholar 

  13. O. V. Sosnin, A. F. Nikitenko, and B. V. Gorev, “Justification of the Energy Variant of the Theory of Creep and Long-Term Strength of Metals,” Prikl. Mekh. Tekh. Fiz. 51 (4), 188–197 (2010) [J. Appl. Mech. Phys. 51 (4), 608–614. (2010)].

    MATH  Google Scholar 

  14. N. A. Veklich, A. M. Lokoshchenko, and P. N. Veklich, “Modeling the Deformability of a Material,” Prikl. Mekh. Tekh. Fiz. 48 (5), 183–188 (2007) [J. Appl. Mech. Phys. 48 (5), 774–778 (2007)].

    Google Scholar 

  15. A. M. Lokoshchenko, and S. A. Shesterikov, “Creep Strength Model with Nonmonotonic Dependence of the Strain during Rupture on the Stress,” Prikl. Mekh. Tekh. Fiz., No. 1, 160–163 (1982) [J. Appl. Mech. Phys. No. 1, 151–153 (1982)].

    Google Scholar 

  16. I. A. Banshchikova, B. V. Gorev, and M. A. Legan, “Laws of the Creep of Metallic Materials at high Temperatures,” J. Phys.: Conf. Ser. 754, 082001 (2016); DOI: https://doi.org/10.1088/1742-6596/754/8/082001.

    Google Scholar 

  17. B. V. Gorev, and I. A. Banshchikova, “On Rational Deformation Modes of Metal Materials under Creep,” in Safety and Monitoring of Technogenic and Natural Systems: Proc. 6th All-Russian Conf., Krasnoyarsk, September 18–21, 2018 (Sib. Feder. Univ., Krasnoyarsk, 2018), pp. 165–170.

    Google Scholar 

  18. A. M. Lokoshchenko, Creep and Long-Term Strength of Metals (Fizmatlit, Moscow, 2016; CRC Press-Taylor and Francis Group, Boca Raton-London-New York); https://doi.org/10.1201/b22242.

    Google Scholar 

  19. C. M. Stewart, A. P. Gordon, Y. W. Ma, R. W. Neu, “An Anisotropic Tertiary Creep Damage Constitutive Model for Anisotropic Materials,” Int. J. Pressure Vessels Piping. 88, 356–364 (2011); DOI: https://doi.org/10.1016/j.ijpvp.2011.06.010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Banshchikova.

Additional information

Original Russian Text © I.A. Banshchikova.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 6, pp. 139–148, November-December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banshchikova, I.A. On the Choice of Forming Modes and Estimation of Residual Service Life Using Kinetic Equations with a Scalar Damage Parameter. J Appl Mech Tech Phy 60, 1096–1103 (2019). https://doi.org/10.1134/S0021894419060154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419060154

Keywords

Navigation