Skip to main content
Log in

Numerical Study of the Tee Hydrodynamics in the Model Problem of Optimizing the Low-Flow Vascular Bypass Angle

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The hydrodynamics of a tee is investigated in the problem of determining the optimal vascular bypass angle during treatment. Four possible bypass angles corresponding to the most commonly used real configurations are considered: π/6, π/4, π/3, and π/2. The problem is solved numerically using the ANSYS code. The condition of minimum integral of the viscous dissipation energy is used as an optimality criterion. It is shown that a bypass angle of π/3 is optimal and π/4 is the least favorable angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Y. Wong, R. Tymianski, I. Radovanovic, and M. Tymianski, “Minimally Invasive Microsurgery for Cerebral Aneurysms,” Stroke 46 (9), 2699–2706 (2015).

    Article  Google Scholar 

  2. J. M. Davies and M. T. Lawton, “Advances in Open Microsurgery for Cerebral Aneurysms,” Neurosurgery 74, S7–S16 (2014).

    Article  Google Scholar 

  3. H. Matsukawa, R. Tanikawa, H. Kamiyama, et al., “Graft Occlusion and Graft Size Changes in Complex Internal Carotid Artery Aneurysm Treated by Extracranial to Intracranial Bypass Using High-Flow Grafts with Therapeutic Internal Carotid Artery Occlusion,” Neurosurgery 81 (4), 672–679 (2017).

    Google Scholar 

  4. N. Ota, F. Goehre, T. Miyazaki, et al., “Bypass Revascularization Applied to the Posterior Cerebral Artery,” World Neurosurgery 96, 460–472 (2016).

    Article  Google Scholar 

  5. V. Uruba, P. Procházka, and V. Skála, “Flow in Branched Channel,” in Topical Problems of Fluid Mechanics 2018 (Prague, Inst. Thermomechanics, 2018), pp. 299–306; DOI: https://doi.org/10.14311/TPFM.2018.040.

  6. Yu. A. Tsurenko, Hydromechanics. Hydraulics, Ed. by A. A. Pshenitsin (Sevmashvtuz, Severodvinsk, 2007) [in Russian]; https://narfu.ru/university/library/books/1758.pdf.

  7. I. E. Idel’chik, Handbook of Hydraulic Resistance (Mashinostroenie, Moscow, 1992) [in Russian].

    Google Scholar 

  8. J. Aubin, D. F. Fletcher, and C. Xuereb, “Design of Micromixers Using CFD Modelling,” Chem. Eng. Sci. 60 (8/9), 2503–2516 (2005).

    Article  Google Scholar 

  9. N. Rivière, G. Travin, and R. J. Perkins, “Transcritical Flows in Three and Four Branch Open-Channel Intersections,” J. Hydraulic Eng. 140 (4), 04014003 (2014).

    Article  Google Scholar 

  10. A. S. Kravchuk, A. I. Kravchuk, and A. P. Mikhievich, “Modeling Turbulent Flow of a Viscous Incompressible Fluid in Pipe Fittings,” Integral 2, 285–301 (2018); https://cyberleninka.ru/article/v/modelirovanieturbulentnogo-potoka-vyazkoy-neszhimaemoy-zhidkosti-v-fitingah-trub.

    Google Scholar 

  11. X. Ding and K. Yamazaki, “Constructal Design of Cooling Channel in Heat Transfer System by Utilizing Optimality of Branch Systems in Nature,” J. Heat Transfer. 129 (3), 245–255 (2007).

    Article  Google Scholar 

  12. T. Hawa and Z. Rusak, “The Dynamics of a Laminar Flow in a Symmetric Channel with a Sudden Expansion,” J. Fluid Mech. 436, 283–320 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Yamaguchi, A. Ito, M. Kuribayashi, et al., “Basic Flow Characteristics in Three-Dimensional Branching Channel with Sudden Expansion,” Europ. J. Mech., B. Fluids 25 (6), 909–922 (2006).

    Article  ADS  Google Scholar 

  14. D. Matsumoto, K. Fukudome, and H. Wada, “Two-Dimensional Fluid Dynamics in a Sharply Bent Channel: Laminar Flow, Separation Bubble, and Vortex Dynamics,” Phys. Fluids 28 (10), 103602 (2016).

    Article  ADS  Google Scholar 

  15. J. Ding, Y. Liu, and F. Wang, “Influence of Bypass Angles on Extracardiac Fontan Connections: A Numerical Study,” Int. J. Numer. Methods Biomed. Eng. 29 (3), 351–362 (2012).

    Article  MathSciNet  Google Scholar 

  16. D. V. Parshin, Yu. O. Kuyanova, D. S. Kislitsin, et al., “On the Impact of Flow-Diverters on the Hemodynamics of Human Cerebral Aneurysms,” Prikl. Mekh. Tekh. Fiz. 59 (6), 5–14 (2018) [J. Appl. Mech. Tech. Phys. 59 (6), 963–970 (2018)].

    MathSciNet  Google Scholar 

  17. Handbook of Hemorheology and Hemodynamics, Ed. by O. K. Baskurt, M. R. Hardeman, M. W. Rampling, and H. J. Meiselman (IOS Press, Amsterdam, 2007) (Ser. Biomed. and Health Res.; Vol. 69); https://www.iospress.nl/book/handbook-of-hemorheology-and-hemodynamics/.

  18. S. N. Kharlamov, Algorithms for Modeling Hydrodynamic Processes (Tomsk Polytech. Univ., Tomsk, 2018) [in Russian].

    Google Scholar 

  19. L. Zarrinkoob, K. Ambarki, and A. Wåhlin, et al., “Blood Flow Distribution in Cerebral Arteries,” J. Cerebral Blood Flow Metabolism 35 (4), 648–654 (2015).

    Article  Google Scholar 

  20. A. K. Khe, A. A. Cherevko, A. P. Chupakhin, et al., “Monitoring of Hemodynamics of Brain Vessels,” Prikl. Mekh. Tekh. Fiz. 58 (5), 7–16 (2017) [J. Appl. Mech. Tech. Phys. 58 (5), 763–770 (2017)].

    MathSciNet  Google Scholar 

  21. S. F. Sia, Y. Qian, W. Matsuda, et al., “Evaluation of Brain Extracranial-to-Intracranial (ECIC) Bypass Treatments by Using Computational Hemodynamic Technology,” IFMBE Proc. 31, 1542–1545 (2010).

    Article  Google Scholar 

  22. A. K. Khe, A. P. Chupakhin, A. A. Cherevko, et al., “Viscous Dissipation Energy as a Risk Factor in Multiple Cerebral Aneurysms,” Russ. J. Numer. Anal. Math. Model. 30 (5), 277–287 (2015).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Chupakhin or D. V. Parshin.

Additional information

Original Russian Text © Yu.O. Kuyanova, S.S. Presnyakov, A.V. Dubovoi, A.P. Chupakhin, D.V. Parshin.

__________

Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 6, pp. 72–80, November-December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuyanova, Y.O., Presnyakov, S.S., Dubovoi, A.V. et al. Numerical Study of the Tee Hydrodynamics in the Model Problem of Optimizing the Low-Flow Vascular Bypass Angle. J Appl Mech Tech Phy 60, 1038–1045 (2019). https://doi.org/10.1134/S0021894419060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419060087

Keywords

Navigation