Skip to main content
Log in

Basic Test Rig for Studying Oscillating Fluid Flows

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A test rig designed for studying oscillating fluid flows in channels is described. The shape of pressure oscillations is defined by displacements of a piston whose motion is controlled by a stepping motor, the minimum step of the piston being 6 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Frayne, D. W. Holdsworth, L. M. Gowman, et al., “Computer-Controlled Flow Simulator for MR Flow Studies,” J. Magnet. Resonance Imaging 2 (5), 605–612 (1992).

    Article  Google Scholar 

  2. D. A. Steinman, R. Frayne, X. D. Zhang, et al., “MR Measurement and Numerical Simulation in an End-to-Side Anastomosis of Steady Flow Model,” J. Biomech. 29 (4), 537–542 (1996).

    Article  Google Scholar 

  3. M. L. Thorne, T. L. Poepping, H. N. Nikolov, et al., “In Vitro Doppler Ultrasound Investigation of Turbulence Intensity in Pulsatile Flow with Simulated Cardiac Variability,” Ultrasound Med. Biol. 35 (1), 120–128 (2009).

    Article  Google Scholar 

  4. N. S. Denisenko, A. A. Yanchenko, A. A. Cherevko, et al., “Modeling of Fluid Motion in an Elastic Y-Tube,” in Nonlinear Waves: Theory and New Applications, Abstracts of All-Russian Conference devoted to the 70th anniversary of V. M. Teshukov, Corresponding member of the Russian Academy of Sciences, Novosibirsk, February 29–March 2, 2016 (Lavrentyev Inst. of Hydrodynamics, Sib. Branch, Russian Acad. of Sci., Novosibirsk, 2016), pp. 44–45.

    Google Scholar 

  5. A. V. Boiko, A. E. Akulov, A. P. Chupakhin, et al., “Measurement of Viscous Flow Velocity and Flow Visualization by Using Two Magnetic Resonance Imagers,” Prikl. Mekh. Tekh. Fiz. 58 (2), 26–31 (2017) [J. Appl. Mech. Tech. Phys. 58 (2), 209–213 (2017)].

    Google Scholar 

  6. A. K. Khe, A. A. Cherevko, A. P. Chupakhin, et al., “Monitoring of Hemodynamics of Brain Vessels,” Prikl. Mekh. Tekh. Fiz. 58 (5), 7–16 (2017) [J. Appl. Mech. Tech. Phys. 58 (5), 763–770 (2017)].

    MathSciNet  Google Scholar 

  7. N. S. Denisenko, A. P. Chupakhin, A. K. Khe, et al., “Experimental Measurements and Visualisation of a Viscous Fluid Flow in Y-Branching Modelling the Common Carotid Artery Bifurcation with MR and Doppler Ultrasound Velocimetry,” J. Phys: Conf. Ser. 722, pp. 012013.1–012013.8 (2016).

    Google Scholar 

  8. G. R. Grek, A. V. Boiko, V. M. Gilev, et al., “Automated Control of a Traversing Gear in a Wind Tunnel,” Mezhdunar. Zh. Eksp. Obr., No. 11, 155–156 (2013).

    Google Scholar 

  9. A. V. Boiko, V. M. Gilev, G. R. Grek et al., “Development of a Traversing Gear for a Wind Tunnel,” Yuzh.-Sib. Nauch. Vestnik, No. 1, 13–16 (2014).

    Google Scholar 

  10. G. R. Grek, A. V. Boiko, V. M. Gilev, et al., “Automated Data Acquisition System for Hot-Wire Information in an Aerophysical Experiment,” Mezhdunar. Zh. Prikl. Fund. Issled., No. 5, 11–14 (2014).

    Google Scholar 

  11. A. V. Boiko, G. R. Grek, and D. S. Sboev, “Spectral Analysis of Localized Disturbances in Boundary Layer at Subcritical Reynolds Numbers,” Phys. Fluids 15 (12), 3613–3624 (2003).

    Article  ADS  MATH  Google Scholar 

  12. A. V. Boiko and A. V. Dovgal, “Development of a Stationary Streaky Structure in Laminar Separation Bubble,” Teplofiz. Aeromekh. 11 (1), 23–31 (2004) [Thermophys. Aeromech. 11 (1), 23–30 (2004)].

    Google Scholar 

  13. A. V. Boiko, A. V. Dovgal, and A. M. Sorokin, “Transient Growth of Stationary Flow Perturbations at Laminar Boundary-Layer Separation,” Teplofiz. Aeromekh. 18 (1), 109–115 (2011) [Thermophys. Aeromech. 18 (1), 101–106 (2011)].

    Google Scholar 

  14. A. V. Boiko, A. V. Ivanov, Yu. S. Kachanov, and D. A. Mishchenko, “Investigation of Weakly-Nonlinear Development of Unsteady Gortler Vortices,” Teplofiz. Aeromekh. 17 (4), 487–514 (2010) [Thermophys. Aeromech. 17 (4), 455–481 (2010)].

    Google Scholar 

  15. D. S. Lokhov, A. V. Boiko, and D. S. Sboev, “Controlling the Development of Stationary Longitudinal Structures in the Boundary Layer on a Flat Plate Using Riblets,” Prikl. Mekh. Tekh. Fiz. 46 (4), 47–54 (2005) [J. Appl. Mech. Tech. Phys. 46 (4), 496–502 (2005)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Sorokin.

Additional information

Original Russian Text © A.M. Sorokin, A.V. Boiko, A.A. Tulupov, A.P. Chupakhin.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 6, pp. 211–215, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, A.M., Boiko, A.V., Tulupov, A.A. et al. Basic Test Rig for Studying Oscillating Fluid Flows. J Appl Mech Tech Phy 59, 1145–1149 (2018). https://doi.org/10.1134/S0021894418060214

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418060214

Keywords

Navigation