Skip to main content
Log in

Effect of Surface Layer Damage on Acoustic Anisotropy

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Relations for the principal values of the damage tensor based on data on the speeds of longitudinal and transverse waves are proposed. The relationship of acoustic anisotropy with the principal values of the damage tensor are established. The distributions of local speeds and damage along the thickness of the specimen are studied. It is shown that damage is localized in a narrow surface layer, with local damage maxima far exceeding the average damage value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. R. W. Benson and V. J. Raelson, “From Ultrasonics to a New Stress-Analysis Technique, Acoustoelasticity,” Product. Eng. 30 (29), 56–59 (1959).

    Google Scholar 

  2. D. S. Hughes and J. L. Kelly, “Second-Order Elastic Deformation of Solids,” Phys. Rev. 92 (5), 1145–1159 (1953).

    Article  ADS  MATH  Google Scholar 

  3. N. E. Nikitina, Acoustoelasticity. Experience of Practical Application (Talam, Nizhniy Novgorod, 2005) [in Russian].

    Google Scholar 

  4. M. Hirao and Y. H. Pao, “Dependence of Acoustoelastic Birefringence on Plastic Strains in a Beam,” J. Acoust. Soc. Amer. 77 (5), 1659–1664 (1985).

    Article  ADS  Google Scholar 

  5. M. Kobayashi, “Ultrasonic Nondestructive Evaluation of Microstructural Changes of Solid Materials under Plastic Deformation. 1. Theory,” Int. J. Plasticity 14 (6), 511–522 (1998).

    Article  MATH  Google Scholar 

  6. A. K. Belyaev, A. M. Lobachyov, V. S. Modestov, et al., “Estimation of Plastic Strain Using Acoustic Anisotropy,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 124–131 (2016).

    Google Scholar 

  7. B. O’Neill and R. G. Maev, “Acousto-Elastic Measurement of the Fatigue Damage in Waspaloy,” Res. Nondestruct. Evaluat. 17 (3), 121–135 (2006).

    Article  ADS  Google Scholar 

  8. V. I. Erofeev, A. N. Morozov, and E. A. Nikitina, “Accounting for the Effect of Material Damage on the Propagation Speed of an Elastic Wave in It,” Electron. Zh., Tr. Mosk. Aviats. Inst., No. 40, 1–5 (2010).

    Google Scholar 

  9. O. V. Muravieva, V. V. Muraviev, M. A. Gabbasova, et al., “Electromagnetic-Acoustic Structural Analysis of Rolled Bars,” AIP Conf. Proc. 1785 (1), 030017 (2016).

    Article  Google Scholar 

  10. M. Fishkis and J. C. Lin, “Formation and Evolution of a Subsurface Layer in a Metal Working Process,” Wear 206, 156–170 (1997).

    Article  Google Scholar 

  11. S. Ghosh, M. Li, and D. Gardiner, “A Computational and Experimental Study of Cold Rolling of Aluminum Alloys with Edge Cracking,” J. Manuf. Sci. Eng. 126, 74–82 (2004).

    Article  Google Scholar 

  12. H. Riedel, F. Andrieux, and T. Walde, “The Formation of Edge Cracks during Rolling of Metal Sheet,” Steel Res. Int. 78, 818–824 (2007).

    Article  Google Scholar 

  13. K. Kenmochi, I. Yarita, H. Abe, et al., “Effect of Micro-Defects on the Surface Brightness of Cold-Rolled Stainless-Steel Strip,” J. Mater. Process. Technol. 69, 106–111 (1997).

    Article  Google Scholar 

  14. M. A. Golovnin and R. F. Iskhakov, “Formation of Properties of Aluminum Alloy in Hot Rolling,” in Materials Science and Metal Physics of Light Alloys, Proc. 3rd Int. Scientific Scholarship for Youth, Ekaterinburg, December 8–12, 2014 (Ural. Federal University, Ekaterinburg, 2014), pp. 208–210.

    Google Scholar 

  15. F. D. Murnaghan, “Finite Deformation of Elastic Solid,” Amer. J. Math. 59, 235–260. (1937).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. I. Lur’e, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  17. L. M. Kachanov, “On the Fracture Time in Creep,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 8, pp. 26–31.

  18. S. Murakami and N. Ohno, “A Continuum Theory of Creep and Creep Damage,” in Creep in Structures, Ed. by A. R. S. Ponter and D. R. Hayhurst (Springer, Berlin, 1981), pp. 422–443.

    Chapter  Google Scholar 

  19. A. S. Semenov, “Symmetrization of the Effective Stress Tensor for Media with Anisotropic Damage,” Nauch.-Tekh. Vedom. St.-Peterb. Gos. Politekh. Univ., Fiz.-Mat. Nauiki 10 (2), 82–98 (2017).

    MathSciNet  Google Scholar 

  20. A. K. Belyaev, A. I. Grishchenko, V. A. Polyanskiy, et al., “Acoustic Anisotropy and Dissolved Hydrogen as Indicators of Waves of Plastic Deformation,” in Days on Diffraction, Proc. of the Int. Conf., St. Petersburg, June 19–23, 2017, pp. 39–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Semenov.

Additional information

Original Russian Text © A.S. Semenov, V.A. Polyanskii, L.V. Shtukin, D.A. Tretyakov.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 6, pp. 201–210, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, A.S., Polyanskii, V.A., Shtukin, L.V. et al. Effect of Surface Layer Damage on Acoustic Anisotropy. J Appl Mech Tech Phy 59, 1136–1144 (2018). https://doi.org/10.1134/S0021894418060202

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418060202

Keywords

Navigation